SDGs、SDGs 指数、 SDGs債券の分析

2018年12月8日 2018年度第3回森平研究会 明治大学中野キャンパス

森平 爽一郎 慶應義塾大学 伊藤 晴祥 国際大学 小林 弘樹

内容

- 1. SDGsについて
 - SOGOALEU指数(SDGs指数)について
- 2. SDGs債券の分析 SOGOALEU指数を原資産とする世銀債の分析
- 3. SDGs指数の分析
 - SOGOALUS指数を利用した分析

結論

- SDGs世銀債は、額面発行されているがその価値は額面を大幅に 下回る
 - 15年債: 91.02 (額面100に対して)
 - 20年債:86.90 (額面100に対して)
- SDGs世銀債は、その資金利用先としてSDGs関連プロジェクトとう たっているものの、仕組債を発行してその利回りをSDGs指数に連 動させることは、SDGsを達成するものとしては必ずしも有効とは言 えない
 - 通常の債券を発行した場合と比較してSDGs達成度が高まるなどの要因はあるか?このような仕組債である必要があるか?
 - オプションが内包されているがその価値は低い。
- Solactive SDGs指数は、プットオプションが内包されている
 - 他のSDGs指数には言えないかもしれない。
- SDGs達成のためのファイナンススキームについても多く事例があるが、どのようなものが有効か今後検討する必要がある

1. SDGsについて

- 1. SDGsとは?
- 2. SDGsに関連したファイナンススキーム
- 3. CSR, ESG, SDGsとファイナンスの先行研究
- 4. SDGsの達成に向けた指数構築の取り組み

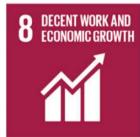
1.1 SDGsとは?

- SDGs: Sustainable Development Goals
 - 持続可能な開発目標
 - www.un.org/sustainabledevelopment/

- SDGsに関する動画
 - https://www.youtube.com/watch?v=YlfOIOC8OXU
 - https://www.youtube.com/watch?v=ROHij1DCFMY
 - https://www.youtube.com/watch?v=5BfWw zvKsU

1.1 SDGsとは? 17 Goals

SUSTAINABLE GALS



事例 3つの段階

- 1. 社会的責任投資/Impact Finance/Sustainable Finance
 - ESGやSDGsに貢献している企業やプロジェクトへの投資やファ イナンスの提供
 - 例: ソーシャルボンド、ジェンダーボンド、グリーンボンド、サスティナブルボンド、天候デリバティブ、ESG融資
- 2. ESG/SDGs指数への投資
 - ESGやSDGsに貢献している企業の株価を利用した株価指数
 - 例: Solactive 指数、ニッセイSDGsファンド、GPIFの指数
- ESG/SDGs指数を原資産とする仕組債(デリバティブ)への 投資
 - ESG/SDGs指数にペイオフが連動する債券
 - 例: 世界銀行発行のSDGs債
 - (ディーラー: BNP ParibasやUSB)

https://www.solactive.com/

Solactive Sustainable Development Goals Index

Solactive SDGs(Sustainable Development Goals)Indexとは

Solactive社が発表していているSDGs指数

Name

- 1. Solactive Sustainable Development Goals World USD Index
- 2. Solactive Sustainable Development Goals World SEK Index
- 3. Solactive Sustainable Development Goals World RC 8 SEK
- 4. Solactive Sustainable Development Goals World RC 8 EUR
- 5. Solactive Sustainable Development Goals World RC 10 USD
- 6. Solactive Sustainable Development Goals World MV Index
- 7. Solactive Sustainable Development Goals World EUR Index

ISIN

DE000SLA2M31

DE000SLA3NX2

DE000SLA3NYO

DE000SLA2MZ1

DE000SLA2MY4

DE000SLA24X6

DE000SLA2M49

指数作成のもとになるSDGs、ESG基準にもとづく企業選択、格付け会社。 Quickの提携企業

異なる通貨とその国に応じて異なる基準あるいは基準値にもとづく指数

8や10の数字は、 Volatilityの目標 を示す。

Solactive指数

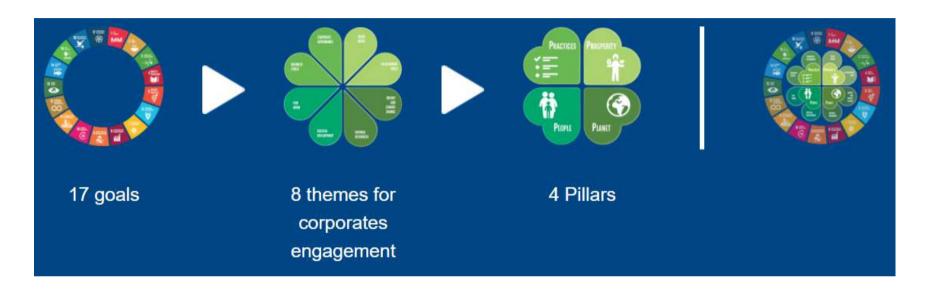
- Vegio Irisのデータを利用してSolactiveが設計
- ユーロや米ドルなど異なる通貨基準で指数が設計されている
- 銘柄選択の基準
 - Step 1: **ESG control (ESG**による銘柄選択)
 - Step 2: SDGs Methodology (SDGsに照らした銘柄選択)
 - Step 3: **Financial filters** (財務基準による選択)
- 30~50社程度の株価から構成される株価指数

SDGs指数の哲学

- 1. 指数は、持続可能な開発目標SDGSへの株式投資を可能に するようにように設計されている。
- 2. 指数はグローバルなESG(環境、社会、ガバナンス)基準に適合した国際企業からなりたっている。こうした企業は、問題のある活動や議論の渦中にある問題には関与せず、活発な炭素排出企業でもなく(少なくとも改善計画の途上にある企業)。
- 3. しかし、最も重要な点は、指数、持続可能な製品を生産しかつ常に持続可能な行動を通じてSDGsに貢献する企業であることです。
- 4. さらに、この指数は、多様な特徴を持ちつつも、十分な流動性と低いボラティリティを有するような企業からなりたっている。

Step 1: **ESG**基準で絞込

- 1. 行動規範4319: 国際労働機関、OECD、U国連などの国際組織・協定が決めた基準に準拠し、6つのグループに集約された38の環境、社会、ガバナンス問題をみたすものである。ここの企業はESG基準にもとづき最低0点、最高100点の評点が与えられる。
- 2. 企業が属する地域ごとに計算された評点が平均以上である企業を選択する。その上で、以下の倫理的基準を適合しない企業を選択から除外する(ネガティブリスト)。


Step 1: **ESG control**: 続き

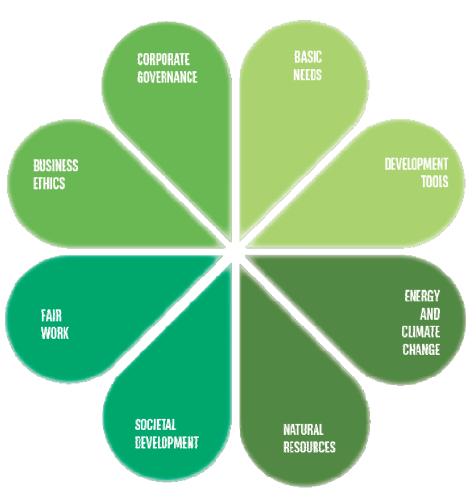
- 1. アルコール: 生産していない、10%未満の流通・販売
- 2. 武器製造:攻撃的あるいは(細菌兵器や毒ガスなど) 論争の的になっている武器を生産していない。防御 的武器の生産が5%未満。
- 3. ギャンブル:5%以下の生産、10%未満の販売・流通
- 4. 原子力:5%未満の核関連活動
- 5. ポルノ: 生産なし、10%未満の販売
- 6. たばこ: 生産なし、または10%未満の副次的なタバコ 製品の生産、10%未満の販売

Step 1: **ESG control**: 続き

- 8. 以下に点に関し過度に問題のある投資をしていない
 - 1. 環境
 - 2. 国際労働機関ILOが決めた以下の基礎条項。no. 29, no. 87, no. 98, no. 100, no. 105, no. 111, no. 138 and no. 182 (www.ilo.org)
 - 3. 国際人権宣言(IBHR) に関わる以下の事項。世界人権宣言。 経済・社会および文化的権利に関する国際規約。市民権お よび政治的権利に関する国際規約とその2つのオプション議 定書
- 9. 10部門での高度な炭素排出企業は、(Vigeo Eirisが評価した)厳格なエネルギー移行戦略がない限り、企業選択から除外される

Step 2: SDGs Methodology

17のSDG 目標 企業の社会に対す る関わり方に関す る8のテーマ 4つの柱


統合基準による SDGs指数作成

指数に採用された企業は、以下の基準に強くコミットしている企業である。

SDGs目標

8つの企業関係

4つの柱

Step 2: SDGs Methodology: 続き

- 1. 販売している製品: 企業は持続可能な開発目標に明確かつNetの影響を与えるものでなければいけない。Netの影響とは、開発目標への関わりが、SDを進展し、負の影響の防止し、あるいは過去の損害を補填すると言う形をとる。企業はそうした製品やサービスに少なくと活動の20%が関係しているものとする。
- 2. 企業行動: 企業は、持続可能な発展を達成するために、 環境、従業員、社会、倫理、ガバナンスについて高い水準 の企業活動(Vigeo Eirisスコアでみて60点以上)が必要であ る。

ある「柱:pillar」の1番目のテーマに対しその産業で一番良い企業、かつ同じ「柱」の2番目のテーマでトップ10にランクする企業のみを選択する.

Step 3: 財務基準でフィルターにかける: USドル基準

- 1. 流動性: 1月および6ヶ月間での1日あたり取引が平均で 10M USドル以上
- 2. 低ボラティリティ:以下の多角化分散投資基準にあたり最も 低いボラティリティを有する50社選択
- 3. 投資比率: 50社に等しい重みで投資
- 4. 産業分散: 同じ産業(Factset で"経済"と定義した)に属する 企業に最高でも25%投資
- 5. 地域分散: 同じ: 地域 (ヨーロッパ, アメリカ, アジア)には最低 10%、最高で50%の投資
- 6. リスクコントロール基準: 年あたりのボラティリティが10%の 上限かつ年あたり3%の調整ファクター

Step 3: 財務基準でフィルターにかける: ユーロ基準

- 1. 流動性: 1月および6ヶ月間での1日あたり取引が平均で 10M ユーロ以上
- 2. 低ボラティリティ: 以下の多角化分散投資基準にあたり最も 低いボラティリティを有する50社選択
- 3. 投資比率: 50社に等しい重みで投資
- 4. 産業分散:同じ産業(Factset で"経済"と定義された)に属する企業に最高でも25%投資。
- 5. 地域分散: 同じ: 地域 (ヨーロッパ, アメリカ, アジア)に最低 10%、最高で50%の投資
- 6. リスクコントロール基準: 年あたりのボラティリティが8%の上限かつ年あたり3%の調整ファクター

Solactive Sustainable Development Goals World MV Index

番号	企業名	ISIN
1	ABN AMRO GROUP NV-CVA	NL0011540547
2	ADECCO SA	CH0012138605
3	AKZO NOBEL NV	NL0000009132
4	BRISTOL-MYERS SQUIBB CO	US1101221083
5	BT GROUP PLC	GB0030913577
6	CAPITALAND MALL TRUST	SG1M51904654
7	CARREFOUR SA	FR0000120172
8	DAIMLER	DE0007100000
9	ENBRIDGE INC	CA29250N1050
10	GAS NATURAL SDG SA	ES0116870314
11	KIMBERLY-CLARK CORP	US4943681035
12	KINGFISHER PLC	GB0033195214
13	KLEPIERRE SA ORD	FR0000121964
14	MIRVAC GROUP	AU00000MGR9
15	MTR CORPORATION LTD	HK0066009694
16	ORANGE	FR0000133308
17	PROCTER & GAMBLE CO	US7427181091
18	RESONA HOLDINGS (DAIWA BANK) ORD	JP3500610005 🔨
19	ROCHE HOLDING AG	CH0012032048
20	SSE PLC	GB0007908733
21	STOCKLAND	AU00000SGP0
22	SUEZ	FR0010613471
23	SWISS RE AG	CH0126881561
24	TELEFONICA SA	ES0178430E18
25	TELSTRA CORP LTD	AU000000TLS2
26	TERNA SPA	IT0003242622
27	UNIBAIL-RODAMCO SE	FR0000124711
28	VENTAS INC	US92276F1003
29	VODAFONE GROUP PLC	GB00BH4HKS39
12/8/2018 30	WOODSIDE PETROLEUM QTA018 Moridaira,	ITAU000000WPLZ

30社 Vigeo Eiris ratingに もとづき銘柄選択

> りそなGが日本企 業としてただ一つ 選ばれている。

FACTSHEET-30.11.2018

<u>SolactiveSustainableDevelopmentGoalsWorldMVIndex</u>

Ticker	Currency	Country	Company	Weight
TEF SQ	EUR	ES	TELEFONICA SA	5.33%
T UN	USD	US	AT&T	5.27%
ORA FP	EUR	FR	ORANGE SA	5.14%
PEGI UW	USD	US	PATTERN ENERGY GROUP INC	5.14%
CCT SP	SGD	SG	CAPITALAND COMMERCIAL TRUST	5.09%
BCE CT	CAD	CA	BCE INC	5.09%
GPT AT	AUD	AU	GPT GROUP	5.01%
MMB FP	EUR	FR	LAGARDERE SCA	4.98%
JMT PL	EUR	PT	JERONIMO MARTINS SGPS SA	4.94%
EDP PL	EUR	PT	EDP ENERGIAS DE PORTUGAL SA	4.94%
SEV FP	EUR	FR	SUEZ	4.86%
NG/ LN	GBP	GB	NATIONAL GRID PLC	4.86%
SSE LN	GBP	GB	SSE PLC	4.82%
MGR AT	AUD	AU	MIRVAC GROUP	4.82%
WPL AT	AUD	AU	WOODSIDE PETROLEUM LTD	4.80%
BKG LN	GBP	GB	BERKELEY GROUP HOLDINGS PLC	4.76%
Ticker	Currency	Country	Company	Weight
VTR UN	USD	US	VENTAS INC	4.25%
IP UN	USD	US	INTERNATIONAL PAPER CO	4.01%
G IM	EUR	IT	ASSICURAZIONI GENERALI SPA	1.04%
DXS AT	AUD	AU	DEXUS	1.02%
ML FP	EUR	FR	CIE GENERALE DES ETABLISSEMENTS MICHELIN	1.02%
CT SP	SGD	SG	CAPITALAND MALL TRUST	1.02%
HCP UN	USD	US	HCP INC	1.00%
KGF LN	GBP	GB	KINGFISHER PLC	1.00%
CD SP	SGD	SG	COMFORTDELGRO CORP LTD ORD	1.00%
FR FP	EUR	FR	VALEO SA	0.99%
WY UN	USD	US	WEYERHAEUSER CO	0.99%
GFC FP	EUR	FR	GECINA SA	
TLS AT	AUD	AU	TELSTRA CORP LTD	0.97%
CPG CT	CAD	CA	CRESCENT POINT ENERGY CORP	0.85%

現在は日本企業は選ばれていない

SDGs世銀債の対象になる指数RC8は 2018年11月30日時点

• ユーロ建てSDGs指数と現金のポートフォリオ

Ticker	Currency	Country	Company	Weight
SOGOALWE Index	EUR	US	SOLACTIVE SUSTAINABLE DEVELOPMENT GOALS WORLD EUR INDEX	75.27%
	EUR	DE	GOALS WORLD EUR CASH	24.73%

Bloomberg Ticker: **SOGOALEU Index**

Solactive Sustainable Development Goals World MV Index

2. SDGs債券の分析

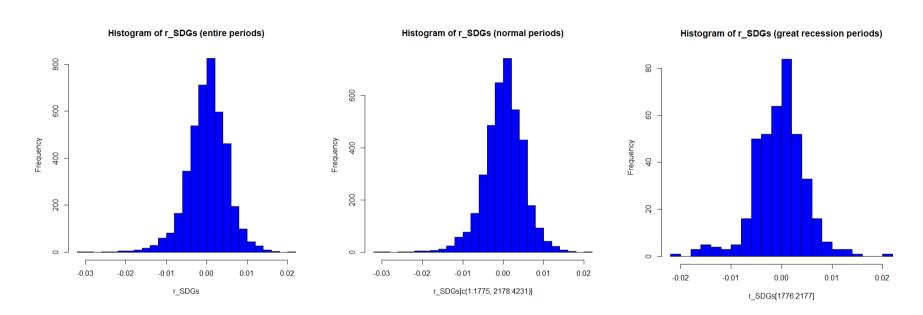
報告内容

- 1. SDGs連動世銀債の概要
- 2. 原資産であるSDGs指数の分析
- 3. 問題点

SDGs15年債の概要

発行体	世界銀行 (国際復興開発銀行、IBRD)
発行体格付け	Aaa / AAA (Moody's / S&P)
発行金額	106.8百万ユーロ
決済日	2017年3月21日
年限	15年
参照インデックス	Solactive Sustainable Development Goals World RC 8 EUR Index (SOGOALEU)
クーポン	なし
満期日	2032年3月22日
発行価格	100%
券面	EUR 100,000
償還価格	券面100%にインデックスパフォーマンスを加重した価格
インデックス	Average Index Return×連動率
パフォーマンス	(但し0%は下回らない)
	連動率 = 100%
	Average Index Return = [Average Index Level – Initial Index Level] / Initial Index Level
	Average Index Level = 10年後および以降満期日(15年後)までの毎年の観測日(計6
	回)における参照インデックスの引け値の <u>平均値</u>
	Initial Index Level = 決済日及び以降6か月後までの毎月の観測日(計7回)における
	参照インデックスの引け値の <u>最小値</u>
ISIN	XS1579356079
上場市場	Luxembourg Stock Exchange
クリアリング	Euroclear / Clearstream
主幹事	BNP Paribas © 2018 Moridaira, Ito, and Kobayashi 28

SDGs20年債の概要


発行体	世界銀行 (国際復興開発銀行、IBRD)
発行体格付け	Aaa / AAA (Moody's / S&P)
発行金額	56.8百万ユーロ
決済日	2017年3月21日
年限	20年
参照インデックス	Solactive Sustainable Development Goals World RC 8 EUR Index (SOGOALEU)
クーポン	1-10年: 固定1.2% (年率)
	11-20年: インデックスリンク
	クーポン
満期日	2037年3月23日
発行価格	100%
券面	EUR 100,000
償還価格	券面100%
インデックス	Average Index Return×連動率
リンククーポン	(但し0%は下回らない)
	連動率 = 10%
	Average Index Return = [Maximum Index Level – Initial Index Level] / Initial Index Level
	Maximum Index Level = 5年後および10年の参照日(2回)における参照インデックスの引
	け値の <u>高い方</u>
	Initial Index Level = 決済日及び以降5か月後までの毎月の観測日(計6回)における参照/
	ンデックスの引け値の <u>平均値</u>
ISIN	XS1579354611
上場市場	Luxembourg Stock Exchange
クリアリング	Euroclear / Clearstream
主於專18	BNP Paribas © 2018 Moridaira, Ito, and Kobayashi 29

SOGOLEU指数 日時収益率の記述統計量

	全期間	通常期	不況期	通常 一不況
平均	$0.01\%^*$	0.02%	-0.04%**	**
中央値	0.04%***	0.05%***	-0.01%	**
最小値	-3.09%	-3.09%	-2.10%	
最大値	2.17%	2.01%	2.17%	
標準偏差	0.49%	0.49%	0.51%	
歪度	-0.49	-0.51	-0.32	
尖度	5.13	5.15	4.98	
JB	967.62	905.79	72.64	
p (JB)	0.00	0.00	0.00	

正規分布はしていない。どのようにモデリングすべきか?

SOGOALEU指数の日次収益率 ユーロ建て(全期間,通常期,不況期)

いずれの期間も正規分布しない。 歪度がマイナス(左裾が長い) 尖度が3以上(尖っている)

正規分布はしていない。どのようにモデリングすべきか?

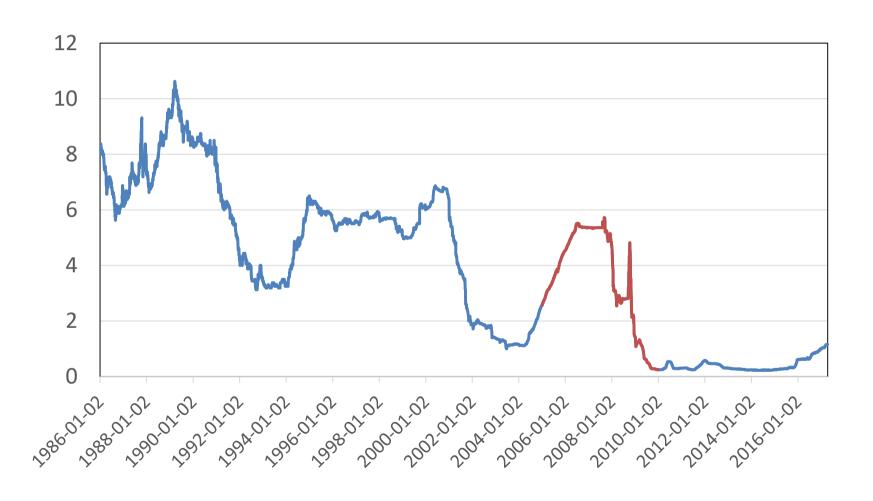
Solactive SDGs指数の CEV確率過程推定

CEV (Constant Elasticity of Variance) モデル: 指数の実確率過程

 $d\tilde{I}_{t} = \mu I_{t} dt + \sigma_{I} I_{t}^{\gamma} d\tilde{W}_{I,t}^{P}$

	ι 1 ι	I, ι		
	全期間	通常期	不況期	不況期以降
μ	6.12%***	7.63%***	-8.40%	11.11%***
Z統計量	3.31	3.94	-1.48	4.22
σ_{l}	14.82%**	13.45%**	0.07%	18.05%*
z統計量	2.78	2.71	0.27	1.46
γ	0.86***	0.88***	2.02**	0.82***
Z統計量	11.30	11.35	2.47	5.90
HJ統計量	51.45	45.45	20.09	36.89
N	4228	3826	402	2054

債券の価値評価のために、実確率からリスク中立確率測度へ変換


CEV (Constant Elasticity of Variance) モデル: 指数のリスク中立確率過程

• 実確率過程

$$d\tilde{I}_{t} = \mu I_{t} dt + \sigma_{I} I_{t}^{\gamma} d\tilde{W}_{I,t}^{P}$$

• リスク中立確率過程

US LIBOR 1986-2017 Red: 2005-2009 (Manipulated)

金利モデル

Vasicek Model & Hull-White Model

Vasicek Model (1977)

$$dr_{t} = a(b - r_{t})dt + \sigma_{r}d\tilde{W}_{r,t}$$

- 平均回帰水準がかで一定
- Hull-White Model (1990)

$$dr_{t} = a(b_{t} - r_{t})dt + \sigma_{r}d\tilde{W}_{r,t}$$

$$dr_{t} = a\left(\frac{\theta(t)}{a} - r_{t}\right)dt + \sigma_{r}d\tilde{W}_{r,t}$$

$$\delta = a\left(\frac{\theta(t)}{a} - r_{t}\right)dt + \sigma_{r}d\tilde{W}_{r,t}$$

- 平均回帰水準b,は時間に依存

Vasicek Model 推計結果

$$dr_{t} = a(b - r_{t})dt + \sigma_{r}d\tilde{W}_{r,t}$$

	全期間	通常期	不況期	不況期 以降
α	-0.26%***	-21.92%****	-4.58%***	-16.5%***
z統計量	3.31	-5.94	-9.79	-7.66
-α/β (b)	-2.82%***	-1.64%***	-5.36%***	-1.65%*
z統計量	2.78	5.75	11.21	1.64
- β (a)	9.13%***	13.38%***	85.32%***	$9.98\%^*$
z統計量	2.72	4.10	6.17	1.65
σ	11.05%***	10.68%***	23.45%***	6.20%***
z統計量	15.20	15.55	11.96	8.79
HJ統計量	147.86	67.30	69.73	150.73
N 12/8/2018	4228	3826 O18 Moridaira, Ito, and Kobaya	402	2054

Hull-White (1990)

$$dr_{t} = a(b_{t} - r_{t})dt + \sigma_{r}d\tilde{W}_{r,t}$$

$$dr_{t} = a\left(\frac{\theta(t)}{a} - r_{t}\right)dt + \sigma_{r}d\tilde{W}_{r,t}$$

$$dr_{t} = (\theta(t) - ar_{t})dt + \sigma_{r}d\tilde{W}_{r,t}$$

$$\theta(t) = F_{t}(0,t) + aF(0,t) + \frac{\sigma^{2}}{2a}(1 - e^{-2at})$$

F(0,t): Instantaneous forward rate for a maturity t as see at time zero.

$$F_{t}(0,t) = \frac{\partial F(0,t)}{\partial t} = \lim_{\Delta t \to 0} \frac{F(0,t+\Delta t) - F(0,t)}{\Delta t}$$

Instantaneous Forward Rate

Hull textbook p. 109

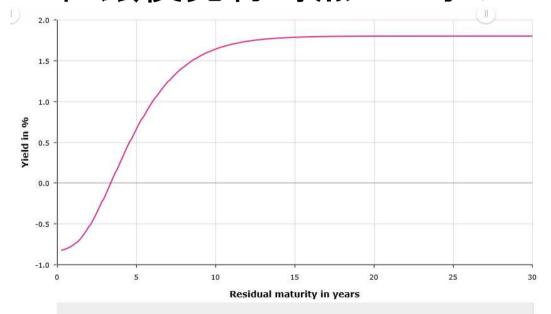
$$F(0,t) = r_t + t \frac{\partial r_t}{\partial t}$$

 $F(0,t) = r_t + t \frac{\partial r_t}{\partial t}$ F(0,t): Instantaneous forward rate for a maturity of t.

 r_t : zero rate for maturity of t

$$F(t_{1}, t_{2}) = \frac{r_{2}t_{2} - r_{1}t_{1}}{t_{2} - t_{1}}$$

$$= \frac{r_{2}t_{2} - r_{2}t_{1} + r_{2}t_{1} - r_{1}t_{1}}{t_{2} - t_{1}}$$


$$= \frac{r_{2}t_{2} - r_{2}t_{1} + r_{2}t_{1} - r_{1}t_{1}}{t_{2} - t_{1}}$$

$$= r_{t} + \lim_{\Delta t \to 0} t \frac{r_{t+\Delta t} - r_{t}}{\Delta t}$$

$$= r_{t} + t \frac{\partial r_{t}}{\partial t}$$

Instantaneous Forward Rate F(0,t) as of March 21st, 2017

• 世銀債発行時点のフォワードレートカーブ

Parameters	21 March 2017
BETA0	1.801459
BETA1	-2.653459
BETA2	11.878117
BETA3	-16.031676
TAU1	1.520035
TAU2	1.701438

$$F(0,t) = \beta_0 + \beta_1 \exp\left(\frac{-t}{\tau_1}\right) + \beta_2 \frac{t}{\tau_1} \exp\left(\frac{-t}{\tau_1}\right) + \beta_3 \frac{t}{\tau_2} \exp\left(\frac{-t}{\tau_2}\right)$$

t: term to maturity, au_1 , au_2 , eta_0 , eta_1 , eta_2 , eta_3 : Parameters to be estimated

Instantaneous Forward Rate F(0,t) and its derivative, $F_t(0,t)$

Instantaneous Forward Rate

$$F(0,t) = \beta_0 + \beta_1 \exp\left(\frac{-t}{\tau_1}\right) + \beta_2 \frac{t}{\tau_1} \exp\left(\frac{-t}{\tau_1}\right) + \beta_3 \frac{t}{\tau_2} \exp\left(\frac{-t}{\tau_2}\right)$$

Its derivative

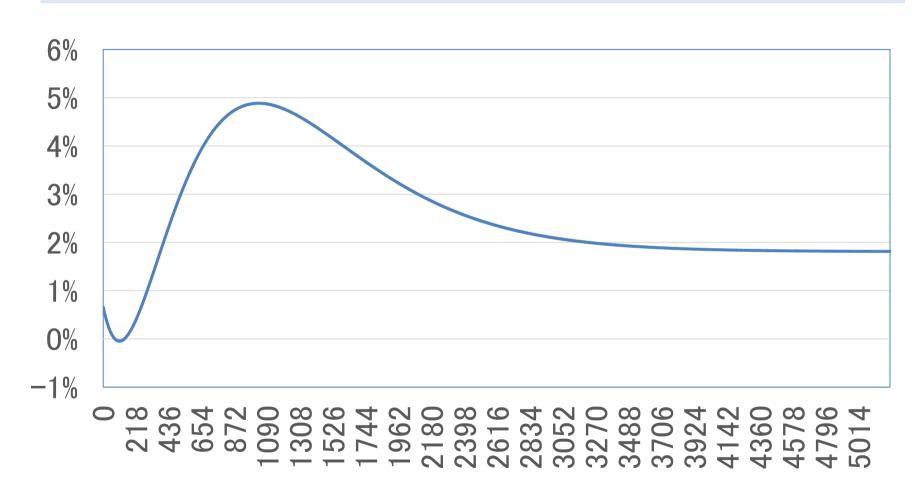
$$F_{t}(0,t) = \frac{\partial F(0,t)}{\partial t}$$

$$= -\beta_{1} \frac{1}{\tau_{1}} \exp\left(\frac{-t}{\tau_{1}}\right) + \beta_{2} \frac{1}{\tau_{1}} \left(1 - \frac{t}{\tau_{1}}\right) \exp\left(\frac{-t}{\tau_{1}}\right) + \beta_{3} \frac{1}{\tau_{2}} \left(1 - \frac{t}{\tau_{2}}\right) \exp\left(\frac{-t}{\tau_{2}}\right)$$

指数のリスク中立確率過程

最終モデル

$$\tilde{r}_{t+1} = r_t + 0.0913 \left(b_t^* - r_t \right) \Delta t + 0.1105 \Delta W_{r,t}^Q$$

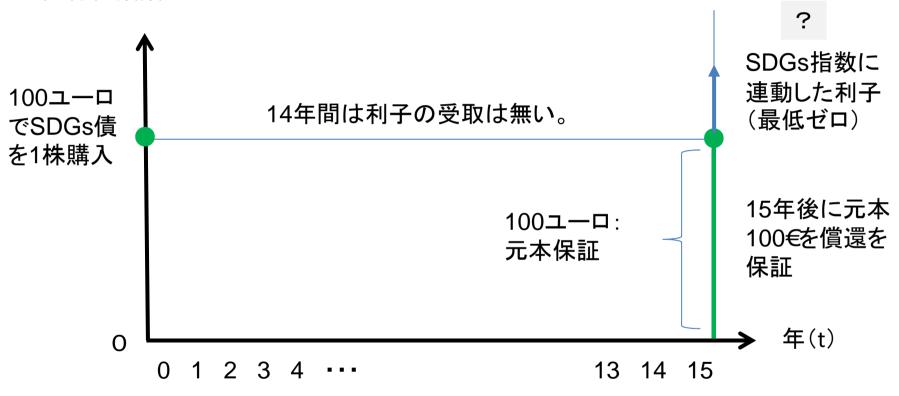

$$where \quad b_t^* = b_t - 0.1105 \times \lambda_r / 0.0913$$

$$\Delta \tilde{W}_{r,t}^Q = \tilde{\varepsilon}_{r,t}^Q \sqrt{\Delta t}, \quad \tilde{\varepsilon}_{r,t}^Q \square N(0,1)$$

$$where \quad \Delta \tilde{W}_{I,t}^Q = \tilde{\varepsilon}_{I,t}^Q \sqrt{\Delta t}, \quad \tilde{\varepsilon}_{I,t}^Q \square N(0,1)$$

 λ_r 金利リスクの価格、長期平均: -1.2 (Ahmed and Wilmott 2007)

時間に依存する金利の長期平均 b_t の 推移



SDGs指数連動債券(世銀債)の 仕組みと価格決定

- 1. 割引債:15年目の額面が指数に連動する割引債
- 2. クーポン債:毎年の金利支払いが指数に連動するクーポン債

15年指数連動・割引債価格 満期のキャシュフロー(元本償還+指数連動ボーナス・クーポン)

満期のボーナス支払いは、原資産がSDGs指数であり、行使価格がゼロのコールオプションとみなせる。 ボーナス支払いはどのように決定されるのか? 以下で説明

満期額面へのボーナスクーポン

1. 初期指数水準IIL、平均指数水準AILの計算

SDGs指数:I, 年(t) 12 13 14

初期指数水準IIL = 時点ゼロ、1,2,3,4,5,6ヶ月目の指数(7つの値)の最小値

$$IIL = Min(I_0, I_{\frac{1}{12}}, I_{\frac{2}{12}}, I_{\frac{3}{12}}, I_{\frac{4}{12}}, I_{\frac{5}{12}}, I_{\frac{6}{12}})$$

平均指数水準(AIL)= 10年目から15年目の指数値の「平均値」

$$AIL = \frac{1}{6} \sum_{t=10}^{15} \tilde{I}_t$$

満期のボーナスクーポンの計算 2. 平均指数リターン: AIRの計算

平均指数リターン
$$AIR = \left(\frac{AIL - IIL}{IIL}\right) = \frac{AIL}{IIL} - 1$$

ここで

平均指数「水準」 Average Index Level: ALL

$$AIL = \frac{1}{6} \sum_{t=10}^{15} \tilde{I}_t$$
 添字tは年度を表している。

初期指数「水準」 Initial Index Level: IIL

$$IIL = Min(I_0, I_{\frac{1}{12}}, I_{\frac{2}{12}}, I_{\frac{3}{12}}, I_{\frac{4}{12}}, I_{\frac{5}{12}}, I_{\frac{6}{12}})$$

IILは発行後6ヶ月前までは不確実。6ヶ月以降は 確定値。

3.15年目の額面償還額は

但し6ヶ月目以降

指数連動率を100%=1.0 とすれば

$$\begin{split} \tilde{F}_{15} &= 100 + Max \Big[\overrightarrow{A}IR, 0 \Big] \times 10 \\ &= 100 + 100 Max \Big[\frac{\overrightarrow{A}IL}{IIL} - 1, 0 \Big] \\ &= 100 + \frac{100}{IIL} Max \Big[\overrightarrow{A}IL - IIL, 0 \Big] \\ &= 100 + \frac{100}{IIL} Max \Big[\frac{1}{6} \sum_{t=10}^{15} \tilde{I}_t - IIL, 0 \Big] \end{split}$$

注:IILは発行後6ヶ月以降は、 既知の値になり、確率変数で はない。それ以前はILLは確率 変数なのでプライシングには注 意

$$IIL = Min(I_0, I_{\frac{1}{12}}, I_{\frac{2}{12}}, I_{\frac{3}{12}}, I_{\frac{4}{12}}, I_{\frac{5}{12}}, I_{\frac{6}{12}})$$

- 1. 最初の式の右辺第2項は、AILを原資産とし、IILを行使価格とするヨーロピアン・コール・オプションを100/IILユーロだけLong(買う)ことからのキャシュフローと同じ。あるいは
- 2. AILは5年目から10年目のSDGs指数の「平均」、つまり 12/832018平均(Asian)オプション価値を求めばよい。

4. 価格決定(7ヶ月目):€単位

$$V_{\frac{7}{12}} = \left(1 + r_{\frac{7}{12}}\right)^{\frac{7}{12}} \left| \frac{100}{\left(1 + r_{15}\right)^{15}} + 100 \sum_{t=10}^{15} \frac{E_{\frac{7}{12}} \left[Max \left[AIR, 0 \right] \right]}{\left(1 + r_{t}\right)^{t}} \right|$$

7ヶ月目 の将来 価値

20年目の額面 10万€受取の 現在価値

15年目の指数連動ボーナスクーポン受取の現在価値

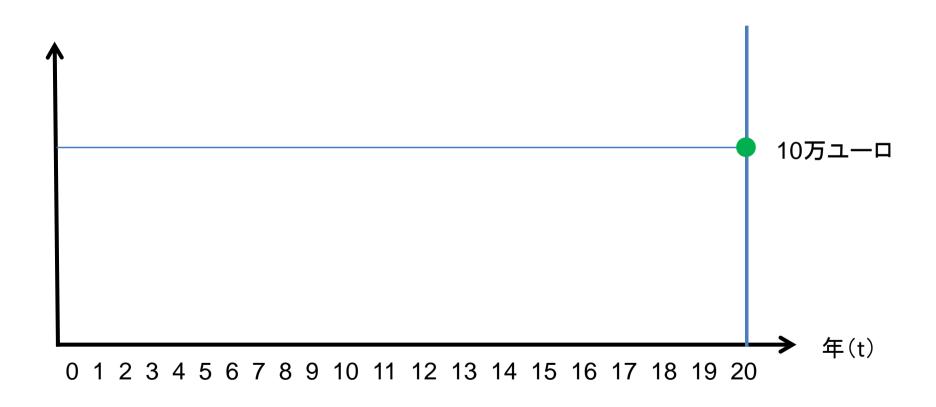
指数値で示すと

平均(アジアン、ポートフォリオ)オプションの期待損益

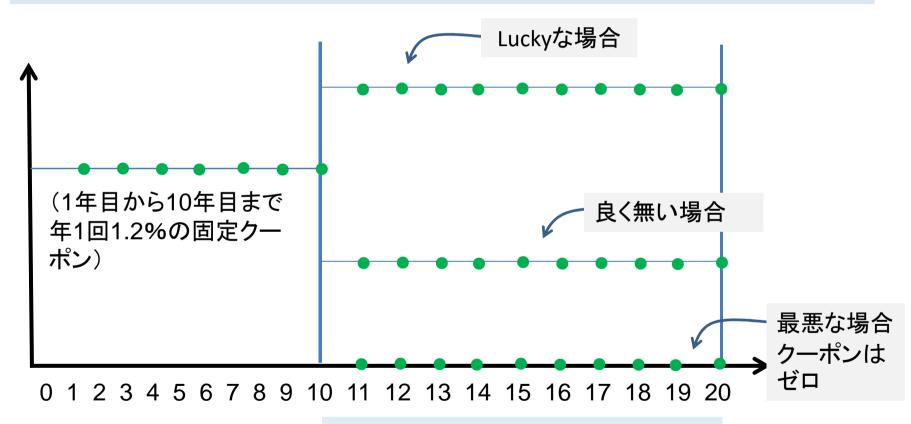
$$V_{\frac{7}{12}} = \left(1 + r_{\frac{7}{12}}\right)^{\frac{7}{12}} \left[\frac{100}{\left(1 + r_{15}\right)^{15}} + \frac{100}{IIL} \sum_{t=10}^{20} \frac{E_{\frac{7}{12}} \left[Max \left[\frac{1}{6} \sum_{t=10}^{15} \tilde{I}_t - IIL, 0 \right] \right]}{\left(1 + r_t\right)^t} \right]$$

5. 価格決定(発行時,t=0):€単位

$$V_{0} = \frac{100}{\left(1 + r_{15}\right)^{15}} + 100 \sum_{t=10}^{15} \frac{E_{0} \left[\max \left[AIR, 0\right]\right]}{\left(1 + r_{t}\right)^{t}}$$

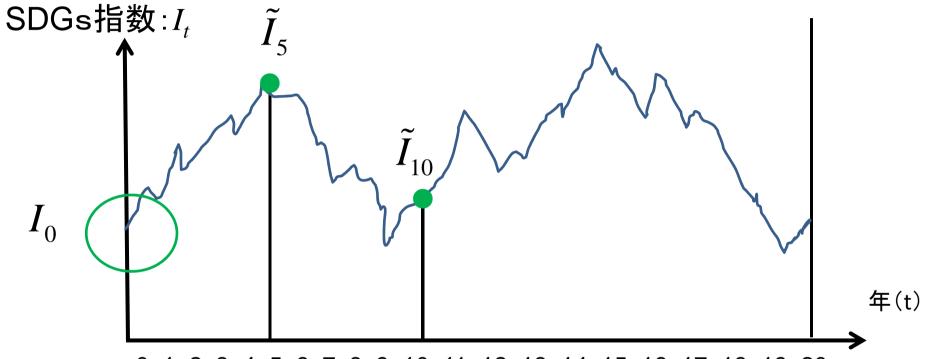

20年目の額面10 万€受取の現在 価値 15年目の指数連動ボーナスクーポン受取の現在価値

$$\tilde{AIR} = \frac{\tilde{AIL}}{\tilde{IIL}} - 1$$


IILもt=0では、不確実

SDGs世銀債-2 20年指数連動クーポン債

20年目の額面支払い:100€で固定


20年指数連動クーポン債 クーポン支払い(最初の10年は固定、次の15年は5年 目と10年目の指数の大きな方に連動)

1年目から10年目は 年1.2%の固定クーポン 11年目から20年目のクーポンは5年 目と10年もの指数から計算されたクー ポンレート(後述)

11年目から20年目のスクーポンの計算

1. 初期指数水準IIL、最大指数水準MILの計算

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

初期指数水準*IIL* = 時点ゼロ、1,2,3,4ヶ月目の指数 (5つの値)の平均値

$$IIL = \frac{1}{5} \left(I_0 + I_{\frac{1}{12}} + I_{\frac{2}{12}} + I_{\frac{3}{12}} + I_{\frac{4}{12}} \right)$$
 この場合 (2018 Moridaira, Ito, and Kobayashi

最大指数水準MIL = 5年目と10年目の指数の最大値

この場合は
$$I_5$$
 $MIL = Max[I_5, I_{10}]$

11年目から20年目のスクーポンの計算 2. 平均指数リターンAIRの計算

平均指数リターン
$$AIR = \left(\frac{MIL - IIL}{IIL}\right) = \frac{MIL}{IIL} - 1$$

ここで

最大指数「水準」

MIL: Maximum

Index Level

初期指数「水準」

IIL: Initial Index

Level

$$MIL = Max \left[\tilde{I}_5, \tilde{I}_{10} \right]$$

$$IIL = \frac{1}{5} \left(I_0 + I_{\frac{1}{12}} + I_{\frac{2}{12}} + I_{\frac{3}{12}} + I_{\frac{4}{12}} \right)$$

注: IILは最初4ヶ月間は確率変数、5ヶ月目以降は既知の定数になることに注意。

添字tは年度を表している。

3. 11年目から20年目のクーポンC_tは

指数連動率を10%=0.1とすれば

$$\begin{split} \tilde{C}_{15} &= 100 \times 0.1 \times Max \big[AIR, 0 \big] \\ &= Max \bigg[\frac{MIL}{IIL} - 1, 0 \bigg] \\ &= \frac{10}{IIL} Max \big[MIL - IIL, 0 \big] \\ &= \frac{10}{IIL} Max \big[Max \big[\tilde{I}_5, \tilde{I}_{10} \big] - IIL, 0 \big] \end{split}$$

注1:IILは発行後6ヶ月経てば、 既知の値になり、確率変数で はない。

注2:10年目「以降」のクーポン は確定する。指数連動債であ るにも関わらず残存期間が等 しい、同じクーポンレートの国 債と同じ価格がつくであろう。

5ヶ月以降の価格決定は

- 1. MILを原資産とし、IILを行使価格とするヨーロピアン・コール・オプションを10/IILユーロだけLong(買う)ことからのキャシュフローと同じ
- 2. MILは5年目から10年目のSDGs指数の「大きい」なもの、つまり
- 3. 最大オプション価値を求めばよい。

4. 価格決定(5ヶ月目):万€単位

$$V_{\frac{5}{12}} = \left(1 + r_{\frac{5}{12}}\right)^{\frac{5}{12}} \left[\sum_{t=1}^{10} \frac{0.012 \times 100}{\left(1 + r_{t}\right)^{t}} + \frac{100}{\left(1 + r_{20}\right)^{20}} + \sum_{t=11}^{20} \frac{E_{0} \left[Max[AIR, 0]\right]}{\left(1 + r_{t}\right)^{t}} \right]$$

5ヶ月目 の将来 価値 最初10年の固 定クーポン受 取の現在価値 20年目の額 面100€受取 の現在価値

11年目から20年目ま でのクーポン受取の 現在価値

指数で示すと

最大オプションの期待損益

$$V_{\frac{5}{12}} = \left(1 + r_{\frac{5}{12}}\right)^{\frac{5}{12}} \left[\sum_{t=1}^{10} \frac{0.012 \times 100}{\left(1 + r_{t}\right)^{t}} + \frac{100}{\left(1 + r_{20}\right)^{20}} + \frac{10}{IIL} \sum_{t=11}^{20} \frac{E_{0} \left[\max \left[\max \left[\tilde{I}_{5}, \tilde{I}_{10} \right] - IIL_{B20}, 0 \right] \right]}{\left(1 + r_{t}\right)^{t}} \right]$$

5. 価格決定(発行時,t=0):万€単位

$$V_0 = \sum_{t=10}^{15} \frac{0.012 \times 100}{(1+r_t)^t} + \frac{100}{(1+r_{20})^{20}} + \sum_{t=11}^{20} \frac{E_0 \left[\max \left[\tilde{AIR}, 0 \right] \right]}{(1+r_t)^t}$$

最初10年の固定 クーポン受取の現 在価値 20年目の額面 100€受取の現在 価値

11年目から20年目までの クーポン受取の現在価値

$$\tilde{AIR} = \frac{MIL}{\tilde{IIL}} - 1$$

IILもt=0では、不確実

モンテカルロシミュレーション 15年債

- Initial observation date:
 - March 21, 2017, April 21, 2017, May 22, 2017, June 21, 2017, July 21, 2017, August 21, 2017 and September 21, 2017
 - then t=0, 23, 44, 66, 88, 109, 132
- Average observation dates:
 - March 8, 2027, March 8, 2028, March 8, 2029, March 8, 2030, March 10, 2031, and March 8, 2032
 - then t= 2599, 2861,3122, 3383, 3644, 3904
- Maturity:
 - March 22, 2032
 - t = 3914

モンテカルロシミュレーション 20年債

- Average (Initial) observation date:
 - March 21, 2017, April 121, 2017, May 22, 2017, June 21, 2017, and July 21, 2017
 - then t=0, 23, 44, 66, 88
- (Maximum) Observation dates:
 - March 8, 2022 and March 8, 2027
 - then t= 1295, 2599
- Maturity:
 - March 22, 2032
 - -t = 3914

実確率下における初期指数(IIL_{B15})、平均指数(AIL_{B15})、 平均指数リターン(AIR_{B15})の分布に関する記述統計量

	IIL_{B15}	AIL_{B15}	AIR _{B15} 15年	AIR _{B15} 1年
平均	171.8629	383.5878	123.11%	5.32%
中央値	172.3114	374.6947	118.22%	5.34%
最大値	187.3250	789.4681	361.91%	10.74%
最小値	147.0326	162.8716	-4.82%	-0.33%
標準偏差	5.0599	89.8580	51.48%	1.62%
歪度	-0.4414	0.5846	0.5796	-0.0491
尖度	3.3422	3.4428	3.4556	2.9475

$$IIL = Min(I_0, I_{\frac{1}{12}}, I_{\frac{2}{12}}, I_{\frac{3}{12}}, I_{\frac{4}{12}}, I_{\frac{5}{12}}, I_{\frac{6}{12}})$$

$$AIL = \frac{1}{6} \sum_{t=10}^{15} \tilde{I}_t \quad AIR = \left(\frac{AIL - IIL}{IIL}\right) = \frac{AIL}{IIL} - 1$$

リスク中立確率下における初期指数(IIL_{B15})、平均指 数(AIL_{B15})、平均指数リターン(AIR_{B15})の分布に関する 記述統計量

	IIL_{B15}	AIL_{B15}	AIR _{B15} 15年	AIR _{B15} 1年
平均	168.9007	199.5047	18.08%	0.93%
中央値	169.4945	194.3863	15.19%	0.95%
最大値	185.7475	431.9393	156.87%	6.49%
最小值	142.1140	79.4772	-52.82%	-4.88%
標準偏差	5.8523	48.9955	28.50%	1.62%
歪度	-0.4495	0.6162	0.6092	-0.0502
尖度	3.1094	3.5072	3.5181	2.9510

$$IIL = Min(I_0, I_{\frac{1}{12}}, I_{\frac{2}{12}}, I_{\frac{3}{12}}, I_{\frac{4}{12}}, I_{\frac{5}{12}}, I_{\frac{6}{12}})$$

$$AIL = \frac{1}{6} \sum_{t=10}^{15} \tilde{I}_t$$

$$AIR = \left(\frac{AIL - IIL}{IIL}\right) = \frac{AIL}{IIL} - 1$$

$$(C. 2018 Moridaira, Ito, and Kobayashi)$$

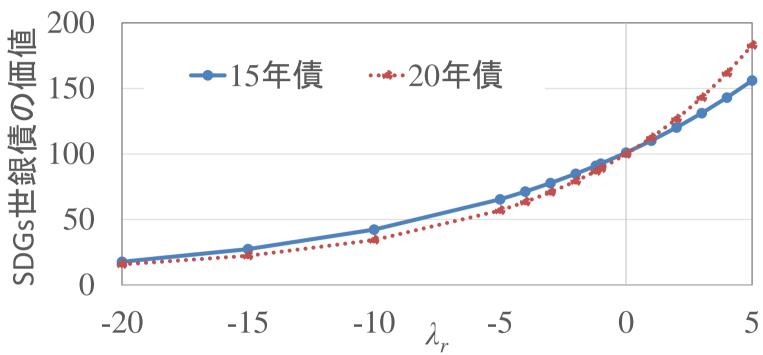
© 2018 Moridaira, Ito, and Kobayashi

実確率下における初期指数(IIL_{B20})、最大指数 (MIL_{B20})、クーポン率($0.1 \times AIR_{B20}$)の分布に関する記述統計量

	IIL _{B20}	MIL _{B20}	$0.1 \times AIR_{B20}$
平均	175.9828	325.8746	8.51%
中央値	175.9150	319.1351	8.15%
最大値	196.3288	644.3112	25.50%
最小值	157.5824	157.6003	— 1.26%
標準偏差	4.9860	70.3270	3.93%
歪度	0.073	0.5742	0.5667
尖度	2.881	3.4403	3.4370

$$IIL = \frac{1}{5} \left(I_0 + I_{\frac{1}{12}} + I_{\frac{2}{12}} + I_{\frac{3}{12}} + I_{\frac{4}{12}} \right) \quad AIR = \left(\frac{AIL - IIL}{IIL} \right) = \frac{AIL}{IIL} - 1$$

$$MIL = Max \left[\tilde{I}_5, \tilde{I}_{10} \right]$$

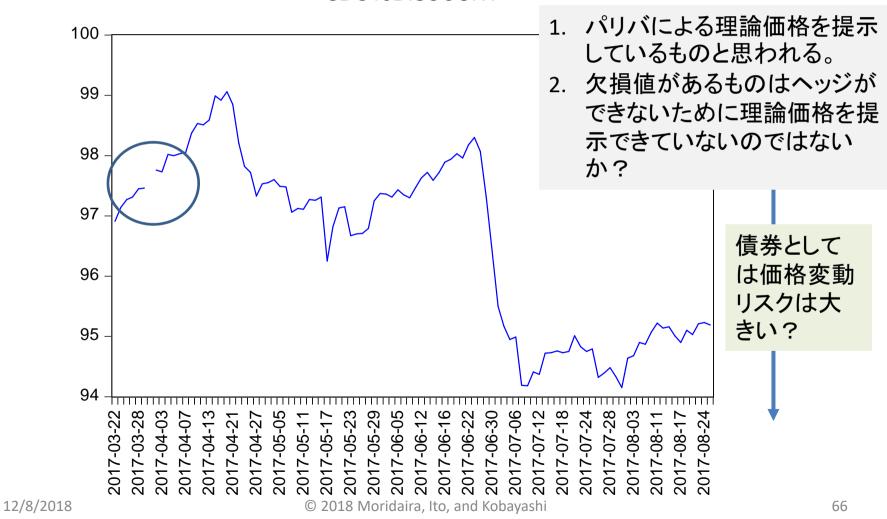

リスク中立確率下における初期指数(IIL_{B20})、最大指数(MIL_{B20})、クーポン率($0.1 \times AIR_{B20}$)の分布に関する記述統計量

	IIL _{B20}	MIL _{B20}	$0.1 \times AIR_{B20}$
平均	173.5565	195.5413	1.26%
中央値	173.4928	190.5712	0.99%
最大値	193.5829	392.4163	11.80%
最小値	155.4434	92.2063	-4.56%
標準偏差	4.9137	39.1919	2.21%
歪度	0.073	0.7403	0.7463
尖度	2.880	3.8389	3.8635

$$IIL = \frac{1}{5} \left(I_0 + I_{\frac{1}{12}} + I_{\frac{2}{12}} + I_{\frac{3}{12}} + I_{\frac{4}{12}} \right) \quad AIR = \left(\frac{AIL - IIL}{IIL} \right) = \frac{AIL}{IIL} - 1$$

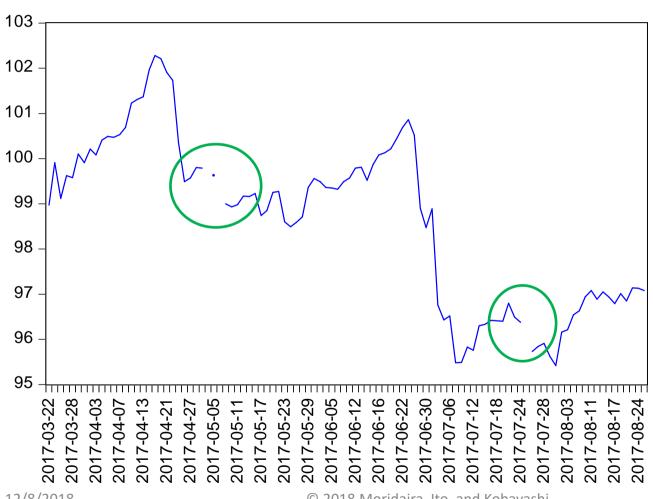
$$MIL = Max \left[\tilde{I}_5, \tilde{I}_{10} \right]$$

世銀債の価値 森平・伊藤・小林 (2018)



- 金利リスクの市場価値、 λr = -1.2, 平均的な値(Ahmed and Wilmot 2007)とした場合
- 15年債: 91.02 (額面100に対して)
- 20年債: 86.90 (額面100に対して)

あまり良い債権とは言え ない


15年指数連動・割引債価格 過去データ 2017/3/22から2017/8/24

SDG15DISCOUNT

20年指数連動クーポン債 過去データ 2017/3/22から2017/8/24

SDGS20COUPON

- 15年指数連動割 引債と"同じよう な"動き。
- 指数と同じような 動きをしているの では?
- 欠損値が幾つか ある。流動性に 問題。発行額が 少ない!

SDGs連動債券の問題点

SDGs連動世銀債:注意点

- 発行額100mil€は小規模。大きな機関投資家であれば、数社で購入できる規模(多くは1bil単位)
- 「新しい試み」という観点から小規模になった のでは?
- 投資家は比較的小規模(例:イタリアの小規模の銀行)。
- 世銀債の価格は「理論価格」を提示している のではないか? 市場価格ではない?

15年ものSDGs連動割引債券 一 価格決定にあたっての問題点 ー

- 1. 指数の分布:指数(指数収益率)は
 - 1. 対数正規(正規)分布していない。
 - 2. 尖度が正規分布より大きい(3以上)。
 - 3. プライシングをどうするのか?
 - 1. 経験分布に基づく分析をおこなう。
 - 2. 尖度が大きな対称分布を正規変換する。
- 2. 15年という長期
 - 1. 指数のボラティリティを一定と考えることができるか? 確率ボラティリティ?
 - 2. 現在のイールドカーブを見て割引金利をきめているが?
- 3. ボーナスクーポンは6年間の指数の算術平均
 - 1. 平均(アジアン)オプションのプライシングは難しい
 - 2. 指数の操作が可能ではないか?
- 4. 最初の6ヶ月はIILは確率変数。どのようにモデリングすべきか?

20年ものSDGs連動債券 一 価格決定にあたっての問題点 ー

- 1. 10年目のリスク:10年目以降にはこの仕組債のクーポンレートは確定。この仕組債は類似のクーポンレートの残存期間が同じのユーロ建て国債と同じ(格付けが AAAであるため)になる。もしこのSDGs債のクーポンがそれと比較して低い場合。価格が暴落?するのでは
- 2. 実質的に10年目以降のクーポンは5年目と10年目の2点の指数だけに 依存
 - 1. SDGs長期投資の観点から見てこれでよいのか?
 - 2. 指数の操作が可能ではないか?
- 3. 指数の分布:指数(指数収益率)は
 - 1. 対数正規(正規)分布していない
 - 2. 尖度が正規分布より大きい(3以上)。
 - 3. プライシングをどうするのか?
 - 1. 経験分布に基づく分析をおこなう。
 - 2. 尖度が大きな対称分布を正規変換する。
- 4. 最初の6ヶ月はIILは確率変数。どのようにモデリングすべきか?

SDGsを推進する金融商品とは

- 1. 世銀債のような複雑な「仕組み債」は意味があるのか?
 - 1. 仕組み債による発行と通常債券による発行とでSDGsの達成 はどちらがより推進されるか?
- 2. 指数に連動した単純な投資信託あるいはETFで良いのでは。
- 3. もし指数連動金融商品を考えるとしたら、どのような「甘味」をつけたら良いのか?
 - 1. 年数
 - 2. 元本保証
 - 3. クーポンレートは?
 - 4. オプション性

今後の研究課題

- 1. 指数の特徴の分析
 - 1. 指数がどのように作られているかをより深く分析する
 - 2. 世界指数との比較:ベータを計算
 - 3. 円建て指数を計算し、日本の投資家にとってのリターンとリスクを計算
 - 4. この指数の合成が日本株で可能かどうか検証。
- 2. SDGs債の分析
 - 1. この債券のデュレーションの計算
 - 2. 流動性リスク
 - 3. 金利の不確実性を考慮に入れたモデルを開発する。平均回帰する短期金利と指数の相関を考慮したモデル
- 3. 日本版の指数の開発と仕組債?の設計
 - 1. 日本企業を対象にした、日本の投資家のための指数の開発
 - 2. その社会的な位置づけ

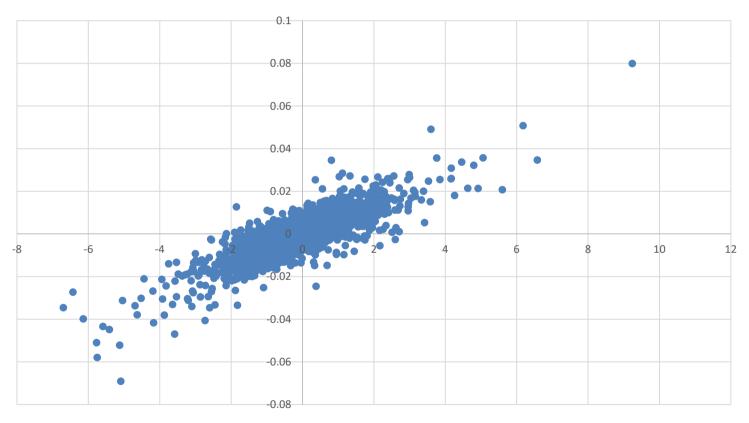
3. SDGs指数の分析

SOLACTIVE指数の分析

研究の目的と結果

1. 目的

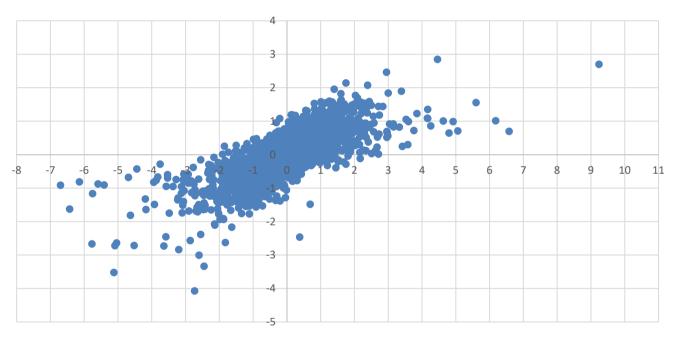
- 1. SDGs指数に連動した、ドル建て現物ファンドを考え
- 2. そのリスクとリターンがどのようであるかを、1要因+プットオプション のポートとして分析する。


2. 結果

- 1. 超過リターンαはゼロ
- 2. 市場ベータは0.2程度、低いシステマティックリスク、しかし
- 3. ダウンサイド(下方)リスク、とりわけ金融危機時におけるリスクヘッジが可能、言い換えると、Deep out of the moneyのプットオプションを内包していると考えられる。
- 4. プットへの投資(+買あるいは一売枚数) はリーマンショック以前は プラス、以降はマイナス。

散布図

x軸:Rm、y軸:SDGs World USD


Rm and SDGs World USD

散布図

x軸:Rm、y軸:SDGs US 10

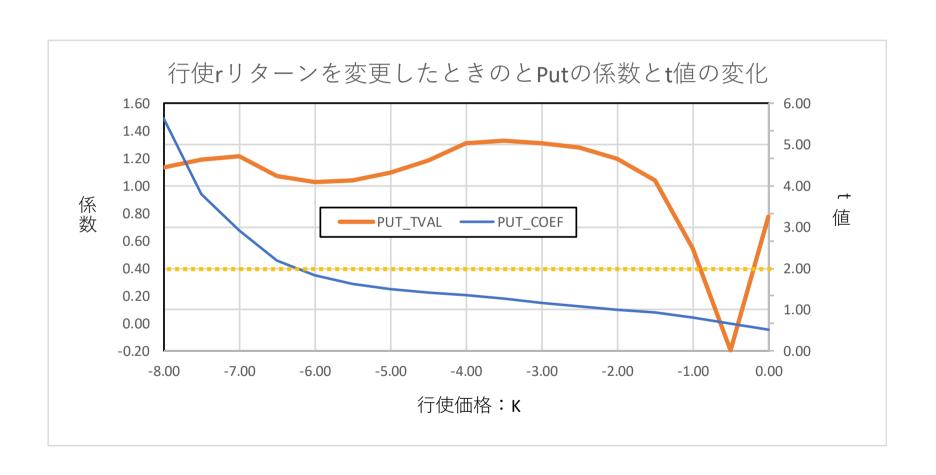
Rm and SDGs US 10

1要因+Put

プットの行使価格(リターン)を 変えたときの回帰分析:1ファクター+Put

$$SDGs_{t} = \alpha + \beta (R_{M,t} - r_{f,t}) + \gamma Put_{t} + e_{t}$$

$$where \ Put_{t} \equiv Max[K - R_{M,t}, 0],$$


$$K = 0, -0.5, -1, \cdots, -6\%$$

- ここでプットは市場ポートフォリオのリターンに関するプットオプションと みなす。
- 2. K(行使リターン)を0%から-0.5%刻みで-8%まで小さくしていったときの 線形回帰分析を行い、係数α、β、γの変化をみた。
- 3. 特に、プットの係数γはオプションの買い(γ>0のとき)、売り(γ<0)枚数とかんがえることができる。

回帰分析の結果 1要因+プットオプション

行例	ー 吏価格を変えご		故変化		行使信	断格を変えた	ときの係数t値	直の変化
STRICK	CONSTANT _COEF	MKTBETA_ COEF	PUT_COEF		STRICK	CONSTANT _TVAL	MKTBETA_ TVAL	PUT_TVAL
0.00	0.0201	0.1963	-0.0462		0.00	2.3371	21.9904	3.2618
-0.50	0.0014	0.2198	-0.0001		-0.50	0.1898	28.3079	0.0066
-1.00	-0.0043	0.2312	0.0416		-1.00	-0.6295	33.1556	2.4847
-1.50	-0.0049	0.2352	0.0788		-1.50	-0.7503	36.5803	4.1330
-2.00	-0.0037	0.2342	0.1026		-2.00	-0.5750	38.4319	4.6477
-2.50	-0.0026	0.2328	0.1265		-2.50	-0.4105	39.6953	4.9370
-3.00	-0.0018	0.2313	0.1500		-3.00	-0.2859	40.4481	5.0270
-3.50	-0.0013	0.2302	0.1782		-3.50	-0.2075	40.9225	5.0989
-4.00	-0.0009	0.2290	0.2074		-4.00	-0.1369	41.2449	5.0414
-4.50	-0.0004	0.2273	0.2243		-4.50	-0.0553	41.3904	4.6203
-5.00	0.0000	0.2262	0.2495		-5.00	-0.0030	41.5070	4.3281
-5.50	0.0002	0.2255	0.2869		-5.50	0.0261	41.5671	4.1302
-6.00	0.0003	0.2250	0.3504		-6.00	0.0444	41.6620	4.0959
-6.50	0.0004	0.2248	0.4588		-6.50	0.0565	41.7986	4.2290
-7.00	0.0004	0.2249	0.6749		-7.00	0.0572	42.0025	4.7124
-7.50	0.0005	0.2245	0.9412		-7.50	0.0711	42.0305	4.6427
12/8/208800	0.0005	0.2240	1.4911	.8 Moridaira, Ito, and Kobayas	-8.00	0.0850	42.0186	4.4513

1要因+Put 行使リターンを変化したときのPutの係数

結果とその分析:続き

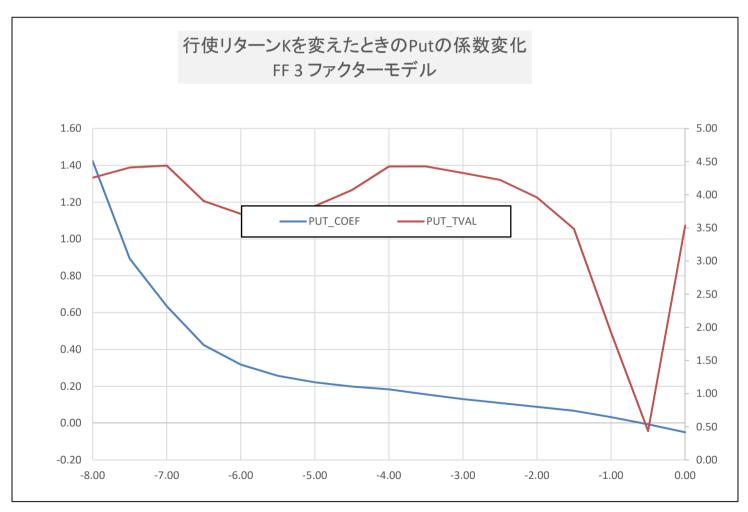
- 1. プットの行使リターンKを変えても、αの値とt値はK=0の時を除いて有意でなく、変わらない。
- 2. プットの行使リターンKを変えても、ベータは0.2程度、システマティックリスクは極めて低い
- 3. プットの行使リターンが-1%以下では、プットは買いポジションを取り、買い枚数は増加、
- 4. 特に-6%以下では買い枚数は急激に増加
- 5. このことはSDGs指数に連動したファンドは
 - 1. 下方リスク、特に
 - 2. 金融危機時のリスクヘッジ機能を有している。アルファを獲得できていなくてもよい。

プットの行使リターンを変えたと きのFF3及びFF5要因+Put

- 1. Putの影響は1要因と同じ傾向
- 2. SMB(時価総額ファクター)は有意でない。

FF-3ファクター分析

$$SDGs_{t} = \alpha + \beta (R_{M,t} - r_{f,t}) + \beta^{SMB}SMB_{t} + \beta^{HML}HML_{t} + \gamma Put_{t} + e_{t}$$


$$where \ Put_{t} \equiv Max[K - R_{M,t}, 0],$$

$$K = 0, -0.5, -1, \cdots, -6\%$$

係数とt値の変化

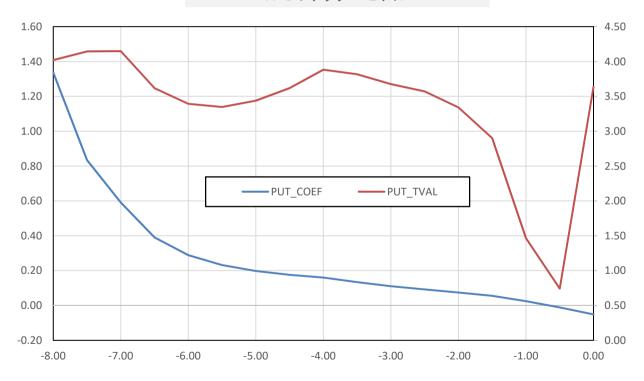
	行使	価格を変え	たときの係数	の変化		 行使価格を変えたときの係数t値の変化					
STRICK	CONSTANT _COEF	MKTBETA_ COEF	SMBBETA_ COEF	HMLBETA_ COEF	PUT_COEF	STRICK	CONSTANT _TVAL	MKTBETA_ TVAL	SMBBETA_ COEF	HMLBETA_ COEF	PUT_TVAL
0.00	0.0220	0.2003	-0.0035	-0.0577	-0.0499	0.00	2.571	22.417	-0.309	-5.617	3.533
-0.50	0.0033	0.2230	-0.0020	-0.0565	-0.0066	-0.50	0.454	28.545	-0.177	-5.483	0.436
-1.00	-0.0026	0.2342	-0.0036	-0.0539	0.0324	-1.00	-0.384	33.228	-0.315	-5.213	1.923
-1.50	-0.0036	0.2383	-0.0051	-0.0513	0.0670	-1.50	-0.543	36.578	-0.453	-4.950	3.485
-2.00	-0.0026	0.2376	-0.0056	-0.0502	0.0883	-2.00	-0.401	38.410	-0.494	-4.843	3.959
-2.50	-0.0017	0.2363	-0.0056	-0.0496	0.1093	-2.50	-0.262	39.671	-0.493	-4.783	4.224
-3.00	-0.0010	0.2350	-0.0054	-0.0496	0.1304	-3.00	-0.156	40.427	-0.476	-4.787	4.328
-3.50	-0.0006	0.2342	-0.0052	-0.0497	0.1560	-3.50	-0.091	40.904	-0.461	-4.805	4.428
-4.00	-0.0002	0.2333	-0.0051	-0.0503	0.1833	-4.00	-0.031	41.229	-0.449	-4.865	4.425
-4.50	0.0003	0.2318	-0.0046	-0.0514	0.1985	-4.50	0.041	41.386	-0.409	-4.978	4.070
-5.00	0.0006	0.2309	-0.0043	-0.0521	0.2214	-5.00	0.087	41.509	-0.382	-5.052	3.828
-5.50	0.0007	0.2303	-0.0041	-0.0527	0.2569	-5.50	0.112	41.576	-0.362	-5.118	3.691
-6.00	0.0008	0.2300	-0.0040	-0.0531	0.3177	-6.00	0.126	41.674	-0.349	-5.162	3.712
-6.50	0.0009	0.2299	-0.0039	-0.0534	0.4237	-6.50	0.135	41.811	-0.346	-5.199	3.906
-7.00	0.0008	0.2301	-0.0041	-0.0535	0.6352	-7.00	0.133	42.011	-0.365	-5.209	4.439
-7.50	0.0009	0.2298	-0.0038	-0.0539	0.8928	-7.50	0.145	42.045	-0.335	-5.252	4.411
-8.00	0.0010	0.2294	-0.0029	-0.0544	1.4225	-8.00	0.156	42.043	-0.259	-5.301	4.256

FF3ファクターを用いたときのPutの 係数変化

FF5ファクター+プット

$$SDGs_{t} = \alpha + \beta (R_{M,t} - r_{f,t}) + \beta^{SMB}SMB_{t} + \beta^{HML}HML_{t} + \beta^{RMW}RMW + \beta^{CMA}CMA + \gamma Put_{t} + e_{t}$$

$$where \ Put_{t} \equiv Max[K - R_{M,t}, 0],$$


$$K = 0, -0.5, -1, \cdots, -6\%$$

FF5ファクター+プット

行使価格を変えたときの係数の変化									行使価格を変えたときの係数t値の変化							
CTDICK	CONSTA I	MKT_COE S	SMB_COE	HML_COE	RME_Coef	CMA_Coe	PUT_COE		CTDICK	CONSTA	MKT_TVA	SMB_TVA	HML_TVA	RME_TVA	CMA_TVA	PUT_TVA
STRICK	NT_COEF	F	F	F	RIVIE_Coet	f	F		STRICK	NT_TVAL	L	L	L	L	L	L
0.00	0.022	0.206	-0.019	-0.093	-0.044	0.144	-0.051		0.00	2.632	22.295	-1.632	-8.357	-2.750	7.679	3.637
-0.50	0.004	0.227	-0.017	-0.092	-0.045	0.143	-0.011		-0.50	0.595	27.772	-1.498	-8.228	-2.798	7.640	0.742
-1.00	-0.002	0.238	-0.018	-0.089	-0.044	0.141	0.025		-1.00	-0.236	31.756	-1.593	-7.942	-2.760	7.523	1.465
-1.50	-0.003	0.242	-0.019	-0.086	-0.043	0.139	0.056	1	-1.50	-0.416	34.469	-1.683	-7.658	-2.668	7.401	2.900
-2.00	-0.002	0.242	-0.020	-0.085	-0.042	0.138	0.074	ı	-2.00	-0.307	35.916	-1.708	-7.544	-2.624	7.360	3.341
-2.50	-0.001	0.241	-0.020	-0.084	-0.042	0.138	0.092	ı	-2.50	-0.190	36.916	-1.702	-7.477	-2.617	7.321	3.571
-3.00	-0.001	0.240	-0.019	-0.084	-0.042	0.137	0.110	ı	-3.00	-0.102	37.502	-1.688	-7.476	-2.615	7.313	3.676
-3.50	0.000	0.239	-0.019	-0.084	-0.042	0.138	0.134	ı	-3.50	-0.052	37.853	-1.677	-7.495	-2.593	7.332	3.817
-4.00	0.000	0.238	-0.019	-0.085	-0.042	0.138	0.160	ı	-4.00	-0.006	38.100	-1.673	-7.559	-2.590	7.369	3.882
-4.50	0.000	0.237	-0.019	-0.086	-0.042	0.139	0.176	ı	-4.50	0.054	38.208	-1.651	-7.682	-2.609	7.435	3.619
-5.00	0.001	0.237	-0.019	-0.087	-0.042	0.140	0.198	ı	-5.00	0.094	38.295	-1.636	-7.762	-2.623	7.474	3.438
-5.50	0.001	0.236	-0.019	-0.088	-0.042	0.141	0.232	ı	-5.50	0.114	38.344	-1.624	-7.830	-2.633	7.499	3.347
-6.00	0.001	0.236	-0.019	-0.088	-0.042	0.141	0.289	ı	-6.00	0.126	38.420	-1.615	-7.873	-2.631	7.510	3.393
-6.50	0.001	0.236	-0.019	-0.088	-0.042	0.141	0.390	L	-6.50	0.131	38.531	-1.612	-7.908	-2.615	7.520	3.617
-7.00	0.001	0.236	-0.019	-0.088	-0.042	0.141	0.590	ı	-7.00	0.128	38.704	-1.624	-7.909	-2.594	7.504	4.148
-7.50	0.001	0.236	-0.018	-0.089	-0.042	0.141	0.834	ĺ	-7.50	0.139	38.734	-1.602	-7.952	-2.611	7.514	4.144
-8.00	0.001	0.236	-0.018	-0.089	-0.042	0.141	1.336		-8.00	0.148	38.726	-1.535	-8.005	-2.605	7.538	4.021

FF5ファクター+プット

行使リターンKを変えたときのPutの係数変化 FF 5 ファクターモデル

「SDGs」銘柄で投信 ニッセイアセット、国内初 日本経済新聞2018年2月8

- ニッセイアセットマネジメントは国連が定めた「持続可能な開発目標」(SDGs)をテーマにした公募投資信託を2月末に設定する。SDGsは技術革新や環境対応など、世界が共通して取り組む17の目標で、これに沿った経営計画を組む日本企業も増えている。SDGsを銘柄選びに使う投信は国内で初めて。
- SDGsは国連が2015年に、15年後の30年を期限とする持続可能な開発のための目標として採択した。関連産業は世界で1000兆円を超すとの予測もありニッセイアセットはSDGsに沿った経営で利益を伸ばしそうな企業に投資する。
- SDGsの対象分野は貧困や飢餓、イノベーションやエネルギーなど広い。

ニッセイアセットのSDGs投資信託

	ニッセイ SDGsジャパンセレクト(年2回)										
	а	sd	b	sd	put	sd	Adj. R	N			
0%	0.00	0.00	1.05	0.05	-0.01	0.08	0.90	188			
-1%	0.00	0.00	1.04	0.03	-0.06	0.09	0.90	188			
-2%	0.00	0.00	1.06	0.03	-0.03	0.11	0.90	188			
-3%	0.00	0.00	1.06	0.03	-0.05	0.41	0.90	188			
	ニッセイ SDGsジャパンセレクト(資産成長)										
	а	sd	b	sd	put	sd	Adj. R	N			
0%	0.00	0.00	1.05	0.05	-0.02	0.08	0.91	188			
-1%	0.00	0.00	1.05	0.03	-0.11	0.14	0.91	188			
-2%	0.00	0.00	1.06	0.03	-0.04	0.39	0.91	188			
-3%	0.00	0.00	1.06	0.03	-0.04	0.39	0.91	188			
		ニッ		sグローバル	セレクト(資産成長・ト	. 137				
	а	sd	b	sd	put	sd	Adj. R	N			
0%	0.00	0.00	0.55	0.14	0.06	0.21	0.32	129			
-1%	0.00	0.00		0.09	-0.23	0.23		129			
-2%	0.00	0.00	0.44	0.08	-0.80	0.40	0.34	129			
-3%	0.00	0.00	0.45	0.07	-3.07	1.29	0.35	129			
	ニッセイ SDGsグローバルセレクト(資産成長・H無)										
	а	sd	b	sd	put	sd	Adj. R	N			
0%	0.00	0.00		0.17	0.11	0.25	0.38	129			
-1%	0.00	0.00		0.11	-0.11	0.14	0.38	129			
-2%	0.00	0.00	0.64	0.09	-0.60	0.48		129			
-3% 12/8/20	0.00	0.00	0.63	0.08	-2.85 © 20	1.54	0.39 Jaira, Ito,	129 and Koba			

α: 0%

信託報酬: 1.23%

グローバルセレクトはプット の売りになっている?

カルマンフィルターによる プットの買い(売り)枚数の時系列変化

カルマンフィルターによる分析

観測方程式

$$SDGs_t = \alpha + \beta (R_{M,t} - r_{f,t}) + \tilde{\gamma}_t Put_t + \tilde{e}_t$$

状態方程式

$$\widetilde{\gamma}_{t} = \widetilde{\gamma}_{t-1} + \widetilde{\mathcal{E}}_{t}$$

where
$$Put_t \equiv Max[-4\% - R_{M,t}, 0],$$

- 1. 状態変数はランダムウォークすると仮定
- 2. プットの行使リターンKは-4%

カルマンフィルターによる K=-4%の時のPutの買い枚数

Sspace: SS2

Method: Maximum likelihood (BFGS / Marquardt steps)

Date: 03/12/18 Time: 23:04

Sample: 1 4189

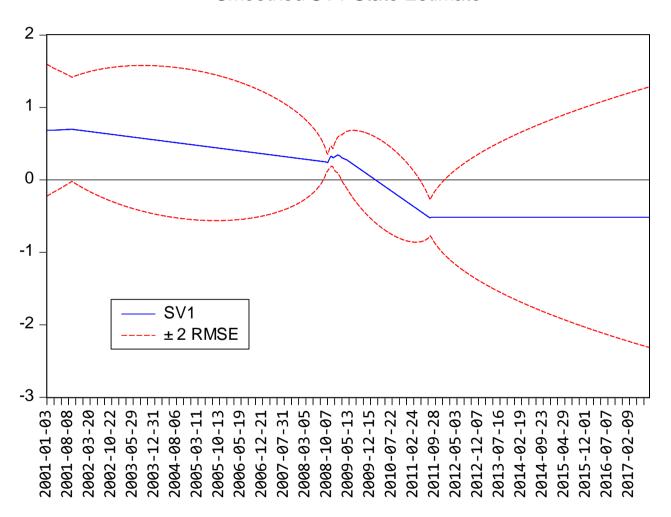
Included observations: 4189

Convergence achieved after 41 iterations

Coefficient covariance computed using outer product of gradients

観測方程式の誤差項の標準誤差

状態方程式の誤 差項の標準誤差


市場ベータ

いずれも有意

	Coefficient	Std. Error	z-Statistic	Prob.
C(4) C(5) C(51)	0.410377 0.022838 0.228730	0.003257 0.007468 0.003959	125.9884 3.058009 57.77864	0.0000 0.0022 0.0000
	Final State	Root MSE	z-Statistic	Prob.
SV1	-0.514837	0.900001	-0.572041	0.5673
Log likelihood Parameters Diffuse priors	-2226.149 3 1	Akaike info criterion Schwarz criterion Hannan-Quinn criter.		1.064287 1.068828 1.065893

状態変数はPutの買いと売り枚数。 カルマンフィルターによる推定(平滑化値)

Smoothed SV1 State Estimate

リーマンショック 以前はロング それ以降は ショートポジショ ンをとる

SDGs指数の分析 特にプットオプション条項を どの様に評価したら良いのか?

2018年12月7日

森平爽一郎

オプション価値の計算

1要因+Putモデルを例にとり どの様にプットオプション「価値」の推定すべきか?

- 1. 何を明らかにすべきなのか?
- 2.3つの考え方を提示

SDGs指数に内包されているPut価値の推定 (1) 直感的で分かりやすい分析

回帰式
$$SDGs_t = \alpha + \beta \left(\tilde{R}_{M,t} - R_{f,t} \right) + \gamma Max \left[k - \tilde{R}_{M,t}, 0 \right] + e_t$$

推定式。 誤差項の期待値はゼロとし、パラメータの推定値α、β、νと右辺の実績値を用いて、 右辺の各項を計算し、時系列グラフを描き、左辺のSDGs指数の収益率の推定値のグラフと比較する。

$$SDGs_{t} = \hat{\alpha} + \hat{\beta} (R_{M,t} - R_{f,t}) + \hat{\gamma} Max [k - R_{M,t}, 0]$$

あるいは、両辺をSDGs₊で割って、SDGs指数の要因分解をおこない、プットオプション価値の「相対的な」重要 性を検討する。

$$1 = \frac{\alpha}{SDGs_t} + \frac{\hat{eta} \times (R_{M,t} - R_{f,t})}{SDGs_t} + \frac{\hat{\gamma} \times Max[k - R_{M,t}, 0]}{SDGs_t},$$
 回帰分析結果の要因分解 マクロ経済分析でよくつか われる。

回帰分析結果の要因分解

プットオプションのプライシング 収益率ベースで

2. 右辺第3項のプットオプションの評価

- 満期(残存期間τ)どうするか? τ=1日のヨーロピアンと考える?
- これを市場ポートフォリオの「収益率」に関するプットオプションと考えられる。
 - 収益率は正規分布する(価格は対数正規分布する)ので
 - 原資産が正規分布する時のプットオプション価格モデル(森平(2015))を 適用する。
 - 計算された理論値に、回帰分析で得たγを掛けて、毎日のポジション価格を推定する。

$$SDGs_{t} = \alpha + \beta \left(\tilde{R}_{M,t} - R_{f,t} \right) + \gamma \underbrace{Max \left[k - \tilde{R}_{M,t}, 0 \right]}_{Put \ Option \ Pricing \ Model} + e_{t}$$

$$\underbrace{CAPM}_{Dasced \ on \ Nomality \ assumption}$$

プットオプションのプライシング 価格ベースモデル

3. 右辺第3項のプットオプション価値

$$SDGs_{t} = \alpha + \beta \left(\tilde{R}_{M,t} - R_{f,t} \right) + \gamma \underbrace{Max \left[k - \tilde{R}_{M,t}, 0 \right]}_{Put \ Option \ Pricing \ Model \ basced \ on \ Nomality \ assumption} + e_{t}$$

$$\tilde{R}_{M,t} = \frac{\tilde{P}_{M,t}}{P_{M,t-1}}, \quad k = \frac{K}{P_{M,t-1}}$$
 ここで $P_{m,t}$ はt日目の市場ポートフォリオ「価格」、 $k=$ パーセント表示の行使比率、と定義されるので、これらを右辺の第3項に代入すると、

$$\gamma Max \left[k - \tilde{R}_{M,t}, 0\right] = \gamma Max \left[\frac{K}{P_{M,t-1}} - \frac{\tilde{P}_{M,t}}{P_{M,t-1}}, 0\right] = \frac{\gamma}{P_{M,t-1}} \underbrace{Max \left[K - \tilde{P}_{M,t}, 0\right]}_{\text{価格指数に関するプット}}$$

毎日変わるプットプットの 買いポジション 価格指数に対するコールオプションなので、指数価格は対数正規分布に従うとして、ブラック=ショールズモデルを適用する。

4. 指数の毎日の理論価格を計算する

収益率表示のSDGs

$$SDGs_{t} = \alpha + \beta \left(\tilde{R}_{M,t} - R_{f,t} \right) + \gamma \underbrace{Max \left[k - \tilde{R}_{M,t}, 0 \right]}_{Put \ Option \ Pricing \ Model \ basced \ on \ Nomality \ assumption} + e_{t}$$

両辺を価格(指数値)で表示し、その期待現在価値として、毎日の理論価格を計算する。 右辺の最初の2つの項は、価格ベースのCAPMとして、第3項は前ページでしめしたBSモデルで 表現できる。

$$SDGS_{t} = R_{F,t-1} + \beta \left(E_{t-1}^{P} \left[\tilde{R}_{M,t} \right] - R_{f,t} \right) + \gamma \frac{1}{R_{F,t-1}} E_{t-1}^{Q} \left[Max \left[k - \tilde{R}_{M,t}, 0 \right] \right]$$

$$= \frac{E\left[P_{M,i}\right] - \lambda'\beta_{i}'}{R_{F,t-1}} + \frac{\gamma}{P_{M,t-1}} \underbrace{E_{t-1}^{Q}\left[Max\left[K - \tilde{P}_{M,t}, 0\right]\right]}_{\text{価格指数に関するプット}}$$

価格ベースのCAPM

付録: 価格ベースのCAPMの導出

©森平

103

CAPMの価格ベースの表現(1)

確実性等価(CE: Certainty Equivalent)法

$$E[SDGs_{t}] = R_{F,t} + \beta (E[R_{M,t}] - R_{F,t}) \equiv R_{F} + \lambda \beta$$

$$SDGs = \frac{\tilde{I}_{t}}{I_{t-1}}$$

$$\tilde{R}_{M,t} = \frac{\tilde{P}_{M,t}}{P_{M,t-1}}$$

$$\tilde{C}$$

$$\lambda_{t} \equiv E[R_{M}] - R_{F,t}$$

価格ベース1:確実性等価

分子は期待リターンから(リスクプレミアム×ベータリスク)を差引いたもの。確 実性等価なキャシュフローをあらわす。

$$I_{t-1} = \frac{E_{t-1} \left[\tilde{P}_{M,t} \right] - \lambda' \beta'}{R_{F,t}}$$

ただし、ここでベータは、将来キャシュフローと市場ポートフォリオの収益率との共分散を後者の分散で割った物

$$\beta_{i}' \equiv \frac{Cov(\tilde{X}_{i}, \tilde{X}_{M})}{Var(\tilde{X}_{M})}$$

証明

$$\begin{split} & \tilde{R}_{i} = \frac{\tilde{X}_{i}}{P_{i0}} \\ & \tilde{E}\left[SDGs_{t}\right] = R_{F} + \beta\left(E\left[R_{M}\right] - R_{F}\right) \\ & \beta_{i} = \frac{Cov(SDFs, \tilde{R}_{M})}{Var(\tilde{R}_{M})} = \frac{Cov\left(\frac{\tilde{I}_{t}}{I_{t-1}}, \frac{P_{M,t}}{P_{M,t-1}}\right)}{Var\left(\frac{\tilde{X}_{M}}{P_{M0}}\right)} = \frac{\left(\frac{1}{I_{t-1}}\right)\left(\frac{1}{P_{M,t-1}}\right)Cov(\tilde{I}_{t}, \tilde{P}_{M,t})}{\left(\frac{1}{P_{M,t-1}}\right)^{2}Var(\tilde{P}_{M,t})} = \left(\frac{P_{M,t-1}}{I_{t-1}}\right)\beta'\left(E\left[\frac{P_{M,t}}{P_{M,t-1}}\right] - R_{F,t}\right) \\ & \tilde{E}\left[SDGs_{t}\right] = E\left[\frac{\tilde{I}_{t}}{I_{t-1}}\right] = R_{F} + \left(\frac{P_{M,t-1}}{I_{t-1}}\right)\beta'\left(E\left[\frac{\tilde{P}_{M,t}}{P_{M,t-1}}\right] - R_{F,t}\right) \\ & \Rightarrow E\left[\tilde{I}_{t}\right] = I_{t-1}R_{F} + I_{t-1}\frac{P_{M,t-1}}{I_{t-1}}\frac{1}{P_{M,t-1}}\beta'\left(E\left[\tilde{P}_{M,t}\right] - I_{t-1}R_{F,t}\right) \\ & \Rightarrow I_{t-1} = \frac{E\left[\tilde{P}_{M,t}\right] - \lambda'\beta'}{R_{F,t}} \quad \lambda' \equiv E\left[\tilde{P}_{M,t}\right] - I_{t-1}R_{F,t} \end{split}$$

Reference

- Cherubini, U., & Romagnoli, S. (2010). The Dependence Structure of Running Maxima and Minima: Results and Option Pricing Applications. Mathematical Finance, 20(1), 35–58
- GRI, UN Global Compact, and wbcsd, 2015, SDGs Compass: The guide for business action on the SDGs https://sdgcompass.org/wp-content/uploads/2015/12/019104 SDG Compass Guide 2015.pdf
- High-Level Expert Group on Sustainable Finance (2017), Financing A Sustainable European Economy, Interim Report, July 2017
- Hull, J. C. (2016). Options, futures, and other derivatives. Pearson Education India. 邦訳あり、第26章 エキゾチック・オプションを参照
- Johnson, H. (1987). Options on the maximum or the minimum of several assets. Journal of Financial and Quantitative Analysis, 22(3), 277–283.
- Khan, Mozaffar and Serafeim, George and Yoon, Aaron, Corporate Sustainability: First Evidence on Materiality (November 9, 2016). The Accounting Review, Vol. 91, No. 6, pp. 1697-1724.
- Lins, Karl V., Henri Servaes, and Ane Tamayo, 2017, Social Capital, Trust, and Firm Performance: The Value of Corporate Social Responsibility during the Financial Crisis, Journal of Finance, 72 (4), pp. 1785-1824.
- Serafeim, George. <u>"Turning a Profit While Doing Good: Aligning Sustainability with Corporate Performance."</u> Governance Studies, The Initiative on 21st Century Capitalism, No. 19, Brookings Institution, December 2014.
- Stulz, R. (1982). Options on the minimum or the maximum of two risky assets: Analysis and applications. Journal of Financial Economics, 10(2), 161–185.
- <u>UN. what do the un sustainable development goals mean for investors?</u>
- Zhou, Zin and Mustafa Moinuddin, 2017, Sustainable Development Goals Interlinkages and Network Analysis: A
 practical tool for SDG integration and policy coherence, IGES Research Report.

Reference

- 小方信行(2016)、社会的責任投資の投資哲学とパフォーマンス、同文館出版
- 加藤敏康, & 吉羽要直. (1999). 「金利派生商 品モデルの実務的活用について」. IMES Discussion Paper.
- 森平爽一郎(2018)、SDGsと金融一SDGs目標 達成には4兆ドルが必要一、金融SDGs研究会 第1会定例会講演資料
- 百年続く企業の条件、帝国データバンク