The minimal habitat size for spreading in a weak competition system with two free boundaries

Chang-Hong Wu†
This talk is based on a joint work with Jong-Sheng Guo‡

†Department of Applied Mathematics, National University of Tainan ‡Department of Mathematics Tamkang University

Boundary Layers in Reaction-Diffusion Phenomena Meiji University, Japan November 28, 2014

Talk Outline

- **I** Motivation
- II Spreading front as a free boundary
- III Main results
- **IV** Discussion

Competition, spreading: Lotka-Volterra type competition-diffusion (1D habitat):

$$\begin{cases}
 u_t = d_1 u_{xx} + r_1 u (1 - u - kv), & x \in \mathbb{R}, \ t > 0, \\
 v_t = d_2 v_{xx} + r_2 v (1 - v - hu), & x \in \mathbb{R}, \ t > 0,
\end{cases}$$
(1.1)

where all parameters are positive and

- u(x, t), v(x, t): population densities;
- d_1, d_2 : diffusion coefficients;
- *k*, *h*: competition coefficients;
- r_1, r_2 : intrinsic growth rates.

• Traveling waves front solutions:

- Traveling waves front solutions:
- Tang-Fife (1980), Gardner (1982), Conley-Gardner (1984), Kan-on (1995,1997)...etc

- Traveling waves front solutions:
- Tang-Fife (1980), Gardner (1982), Conley-Gardner (1984), Kan-on (1995,1997)...etc

• Front-like entire solutions: Morita-Tachibana (2009)

A bird's eye view of u and v

The picture is adapted from Y. Morita and K. Tachibana An entire solution to the Lotka-Volterra competition-diffusion equations, SIAM J. Math. Anal 40 (2009), 2217-2240.

- Asymptotic spreading speed:
 - Weinberger-Lewis-Li (2002), Lewis-Li-Weinberger (2005),
 Li-Weinberger-Lewis (2005), Liang-Zhao (2007,2010)...etc
 - For example, if u is stronger than v,

$$\lim_{t \to \infty} \sup \{ [1 - u(x, t)]^2 + v^2(x, t) : |x| \le (c^* - \varepsilon)t \} = 0,$$

$$\lim_{t \to \infty} \sup \{ [1 - v(x, t)]^2 + u^2(x, t) : |x| \ge (c^* + \varepsilon)t \} = 0,$$

for any $\varepsilon > 0$.

• How to describe the spreading of two species in 1D?

$$\left\{ \begin{array}{l} u_t = du_{xx} + u(a - bu), \ 0 < x < h(t), \ t > 0, \\ u_x(0,t) = 0, \ u(h(t),t) = 0, \ t > 0, \\ h'(t) = -\mu u_x(h(t),t), \ t > 0, \end{array} \right.$$

• Du and Lin (2010):

$$\left\{ \begin{array}{l} u_t = du_{xx} + u(a-bu), \ 0 < x < h(t), \ t > 0, \\ u_x(0,t) = 0, \ u(h(t),t) = 0, \ t > 0, \\ h'(t) = -\mu u_x(h(t),t), \ t > 0, \end{array} \right.$$

• (A spreading-vanishing dichotomy) Every solution either

$$\left\{ \begin{array}{l} u_t = du_{xx} + u(a-bu), \ 0 < x < h(t), \ t > 0, \\ u_x(0,t) = 0, \ u(h(t),t) = 0, \ t > 0, \\ h'(t) = -\mu u_x(h(t),t), \ t > 0, \end{array} \right.$$

- (A spreading-vanishing dichotomy) Every solution either
 - Spreading: $\lim_{t\to +\infty} h(t) := h_{\infty} = \infty$ and $u\to a/b$ as $t\to \infty$ or

$$\left\{ \begin{array}{l} u_t = du_{xx} + u(a - bu), \ 0 < x < h(t), \ t > 0, \\ u_x(0,t) = 0, \ u(h(t),t) = 0, \ t > 0, \\ h'(t) = -\mu u_x(h(t),t), \ t > 0, \end{array} \right.$$

- (A spreading-vanishing dichotomy) Every solution either
 - Spreading: $\lim_{t\to +\infty} h(t) := h_{\infty} = \infty$ and $u\to a/b$ as $t\to \infty$ or
 - Vanishing: $h_{\infty} \leq (\pi/2)\sqrt{d/a}$ and $u \to 0$ as $t \to \infty$

$$\left\{ \begin{array}{l} u_t = du_{xx} + u(a-bu), \ 0 < x < h(t), \ t > 0, \\ u_x(0,t) = 0, \ u(h(t),t) = 0, \ t > 0, \\ h'(t) = -\mu u_x(h(t),t), \ t > 0, \end{array} \right.$$

- (A spreading-vanishing dichotomy) Every solution either
 - Spreading: $\lim_{t\to +\infty} h(t):=h_\infty=\infty$ and $u\to a/b$ as $t\to \infty$ or
 - Vanishing: $h_{\infty} \leq (\pi/2)\sqrt{d/a}$ and $u \to 0$ as $t \to \infty$
- $h(t) = (c_0 + O(1))t$ as $t \to \infty$, c_0 is called the asymptotic spreading speed

 Hilhorst, Iida, Mimura and Ninomiya (2001 Japan J. Indust. Appl. Math): Singular limit analysis

- Hilhorst, Iida, Mimura and Ninomiya (2001 Japan J. Indust. Appl. Math): Singular limit analysis
- Bunting, Du and Krakowski (2012 NHM): "population loss" at the spreading front.

• Guo and Wu (2014):

- Two species have their own spreading front.
- Two spreading fronts may intersect each other.

• Guo-Wu (2014) study the following problem **(P)** with 0 < k < 1 < h (u is superior competitor):

$$\begin{split} u_t &= d_1 u_{xx} + r_1 u (1 - u - kv), \quad 0 < x < s(t), \ t > 0, \\ v_t &= d_2 v_{xx} + r_2 v (1 - v - hu), \quad 0 < x < \sigma(t), \ t > 0, \\ u_x(0,t) &= v_x(0,t) = 0, \ t > 0, \\ u &\equiv 0 \quad \text{for } x \geq s(t) \text{ and } t > 0; \ v \equiv 0 \quad \text{for } x \geq \sigma(t) \text{ and } t > 0, \\ s'(t) &= -\mu_1 u_x(s(t),t); \ \sigma'(t) &= -\mu_2 v_x(\sigma(t),t) \text{ for } t > 0, \\ (s,\sigma)(0) &= (s_0,\sigma_0), \ (u,v)(x,0) = (u_0,v_0)(x) \text{ for } x \in [0,\infty), \end{split}$$

- In ODE sense: u always wipes out v if 0 < k < 1 < h.
- Guo-Wu (2014): The inferior competitor v can survive if 0 < k < 1 < h!

 Question: does there exist the minimal habitat size for spreading of v?

- Question: does there exist the minimal habitat size for spreading of v?
- We do not know if 0 < k < 1 < h!

- Question: does there exist the minimal habitat size for spreading of v?
- We do not know if 0 < k < 1 < h!
- Yes if 0 < h, k < 1 (Wu, 2014).

- Question: does there exist the minimal habitat size for spreading of v?
- We do not know if 0 < k < 1 < h!
- Yes if 0 < h, k < 1 (Wu, 2014).
- Given d_i , r_i (i=1,2), h and k (the parameters in u and v-equation), there exists s_{\min} in the sense that it is the minimal value such that $s_0 \geq s_{\min}$ guarantees the spreading of u, regardless of σ_0 , u_0 , v_0 and μ_i , i=1,2, but it can vanish eventually if $s_0 < s_{\min}$.

- Question: does there exist the minimal habitat size for spreading of v?
- We do not know if 0 < k < 1 < h!
- Yes if 0 < h, k < 1 (Wu, 2014).
- Given d_i , r_i (i=1,2), h and k (the parameters in u and v-equation), there exists s_{\min} in the sense that it is the minimal value such that $s_0 \geq s_{\min}$ guarantees the spreading of u, regardless of σ_0 , u_0 , v_0 and μ_i , i=1,2, but it can vanish eventually if $s_0 < s_{\min}$.
- s_{min} : the minimal habitat size for spreading of u.

- Hereafter, we always assume **(H)**: 0 < h, k < 1.
- Let $s_{\infty} := \lim_{t \to \infty} s(t)$ and $\sigma_{\infty} := \lim_{t \to \infty} \sigma(t)$
- We introduce the following four quantities:

$$\begin{split} s_* &:= \frac{\pi}{2} \sqrt{\frac{d_1}{r_1}}, \quad s^* := \frac{\pi}{2} \sqrt{\frac{d_1}{r_1}} \frac{1}{\sqrt{1-k}}, \\ \sigma_* &:= \frac{\pi}{2} \sqrt{\frac{d_2}{r_2}}, \quad \sigma^* := \frac{\pi}{2} \sqrt{\frac{d_2}{r_2}} \frac{1}{\sqrt{1-h}}. \end{split}$$

• $s_* < s^*$ and $\sigma_* < \sigma^*$.

• (Vanishing) The species u vanishes eventually if $s_{\infty} < +\infty$ and

$$\lim_{t\to+\infty}\|u(\cdot,t)\|_{C([0,s(t)])}=0;$$

• (Spreading) The species u spreads successfully if $s_{\infty} = +\infty$ and the species u persists in the sense that

$$\liminf_{t\to\infty} u(x,t) > 0$$

uniformly in any bounded interval of $[0, \infty)$.

Theorem

Assume (H). Then the followings hold:

- (i) If $s_{\infty} \leq s_*$, then u vanishes eventually.
- (ii) If $s_{\infty} \in (s_*, s^*]$, then u vanishes eventually and v spreads successfully.
- (iii) If $s_{\infty} > s^*$, then u spreads successfully.

Theorem

Assume (H). Then the followings hold:

- (i) If $\sigma_{\infty} \leq \sigma_*$, then v vanishes eventually.
- (ii) If $\sigma_{\infty} \in (\sigma_*, \sigma^*]$, then v vanishes eventually and u spreads successfully.
- (iii) If $\sigma_{\infty} > \sigma^*$, then v spreads successfully.

v vanishes v spreads v spreads
$$\sigma_*$$
 σ_*

Corollary (spreading-vanishing quartering)

Assume (H). Then the dynamics of (P) can be classified into four cases:

- (i) both two species vanish eventually. In this case, $s_{\infty} \leq s_*$ and $\sigma_{\infty} \leq \sigma_*$,
- (ii) u vanishes eventually and v spreads successfully. In this case, $s_{\infty} \leq s^*$,
- (iii) u spreads successfully and v vanishes eventually. In this case, $\sigma_{\infty} \leq \sigma^*$.
- (iv) both two species spreading successfully.

Theorem

Assume (H). Then the followings hold:

- (a) If $s_0 \ge s^*$, then u spreading successfully, regardless of u_0 , v_0 , σ_0 .
- (b) If $s_0 < s_*$ and $||u_0||_{L^{\infty}}$ is small enough, then u vanishes eventually.
- (c) If $s_0 < s_*$, $||u_0||_{L^{\infty}}$ is small enough and $\sigma_0 \ge \sigma^*$, then u vanishes eventually and v spreading successfully.

Theorem

Assume (H). Then the followings hold:

- (d) If $\sigma_0 < \sigma_*$, $||v_0||_{L^{\infty}}$ is small enough and $s_0 \ge s^*$, then v vanishes eventually and u spreading successfully.
- (e) Let $s_0 \in (s_*, s^*)$ and $\sigma_0 > \sigma^*$ (so v spreading successfully). Then the species u vanishes eventually with $s_\infty \in (s_*, s^*)$ as long as h and μ_1 are small enough.

- Recall that if $s_{\infty} > s^*$, then u spreads successfully.
- Question: for any given d_i , r_i (i=1,2), h and k, the parameters in u-equation and v-equation, does there exist a s_{\min} in the sense that it is the minimal value such that $s_0 \geq s_{\min}$ guarantees the spreading of u, regardless of σ_0 , u_0 , v_0 and μ_i , i=1,2, but it can vanish eventually if $s_0 < s_{\min}$
- If such s_{min} exists, we call it the minimal habitat size for spreading of u.

Theorem (The minimal habitat size for spreading of u)

Assume **(H)** and let d_i , r_i (i = 1, 2), h and k be given. Then there exists minimal habitat size for spreading

$$s_{min} := min\{\hat{s} > 0 | u \text{ always spreads successfully if } s_0 = \hat{s}\}$$

such that the species u spreads successfully, regardless of u_0 , v_0 , σ_0 and the parameters μ_i , i=1,2 if and only if $s_0 \geq s_{min}$. Furthermore,

$$\frac{\pi}{2}\sqrt{\frac{d_1}{r_1}\left(\frac{1-hk}{1-k}\right)} \le s_{\min} \le s^* \tag{3.2}$$

Define

 $A := \{\hat{s} > 0 | u \text{ always spreads successfully if } s_0 = \hat{s},$ regardless of u_0 , v_0 , σ_0 and $\mu_i\}$.

Define

$$A := \{\hat{s} > 0 | u \text{ always spreads successfully if } s_0 = \hat{s},$$
 regardless of u_0 , v_0 , σ_0 and $\mu_i\}$.

• $A \neq \emptyset$ since $s^* \in A$. Hence $s_{\min} := \inf A$ is well-defined.

Define

$$A := \{\hat{s} > 0 | u \text{ always spreads successfully if } s_0 = \hat{s},$$
 regardless of u_0 , v_0 , σ_0 and $\mu_i\}$.

- $A \neq \emptyset$ since $s^* \in A$. Hence $s_{\min} := \inf A$ is well-defined.
- Claim: $\tilde{s} \in A \Rightarrow s \in A$ for all $s > \tilde{s}$ (comparison).

Define

 $A := \{\hat{s} > 0 | u \text{ always spreads successfully if } s_0 = \hat{s},$ regardless of u_0 , v_0 , σ_0 and $\mu_i\}$.

- $A \neq \emptyset$ since $s^* \in A$. Hence $s_{\min} := \inf A$ is well-defined.
- Claim: $\tilde{s} \in A \Rightarrow s \in A$ for all $s > \tilde{s}$ (comparison).
- Claim: $s_{\min} \in A$.

Define

$$A := \{\hat{s} > 0 | u \text{ always spreads successfully if } s_0 = \hat{s},$$
 regardless of u_0 , v_0 , σ_0 and $\mu_i\}$.

- $A \neq \emptyset$ since $s^* \in A$. Hence $s_{\min} := \inf A$ is well-defined.
- Claim: $\tilde{s} \in A \Rightarrow s \in A$ for all $s > \tilde{s}$ (comparison).
- Claim: $s_{\min} \in A$.
- Claim:

$$\frac{\pi}{2}\sqrt{\frac{d_1}{r_1}\bigg(\frac{1-hk}{1-k}\bigg)} \le s_{\min}.$$

Using a contradiction argument.

Corollary (The minimal habitat size for spreading of v)

Assume **(H)** and let d_i , r_i (i = 1, 2), h and k be given. Then there exists minimal habitat size for spreading

$$\sigma_{\min} := \min\{\hat{\sigma} > 0 | v \text{ always spreads successfully if } \sigma_0 = \hat{\sigma}\}$$

such that the species v spreads successfully, regardless of u_0 , v_0 , s_0 and the parameters μ_i , i=1,2 if and only if $\sigma_0 \geq \sigma_{\min}$. Furthermore,

$$\frac{\pi}{2}\sqrt{\frac{d_2}{r_2}\left(\frac{1-hk}{1-h}\right)} \le \sigma_{\min} \le \sigma^*$$

Theorem (Long-time behavior)

Assume that **(H)** and $s_{\infty} = \sigma_{\infty} = \infty$. Then for each $l \geq 0$,

$$\lim_{t \to \infty} \max_{0 \le x \le l} \left| u(x, t) - \frac{1 - k}{1 - hk} \right| = 0,$$

$$\lim_{t \to \infty} \max_{0 \le x \le l} \left| v(x, t) - \frac{1 - h}{1 - hk} \right| = 0.$$

• Iteration scheme. Construct some suitable sequences $\{\underline{u}_n\}$, \overline{u}_n , \underline{v}_n and \overline{v}_n .

Theorem (Long-time behavior)

Assume that **(H)** and $s_{\infty} = \sigma_{\infty} = \infty$. Then for each $l \geq 0$,

$$\lim_{t \to \infty} \max_{0 \le x \le I} \left| u(x, t) - \frac{1 - k}{1 - hk} \right| = 0,$$

$$\lim_{t \to \infty} \max_{0 \le x \le I} \left| v(x, t) - \frac{1 - h}{1 - hk} \right| = 0.$$

- Iteration scheme. Construct some suitable sequences $\{\underline{u}_n\}$, \bar{u}_n , \underline{v}_n and \bar{v}_n .
- For each l > 0,

$$\underline{u}_n \leq \liminf_{t \to +\infty} u(x,t) \leq \limsup_{t \to +\infty} u(x,t) \leq \overline{u}_n,$$

$$\underline{v}_n \leq \liminf_{t \to +\infty} v(x,t) \leq \limsup_{t \to +\infty} v(x,t) \leq \overline{v}_n,$$

IV Discussion

- In the weak competition case, the larger initial habitat size the species owns, the more benefit the species has for spreading.
- If $v \equiv 0$, we have $s_{\min} = s_*$, which is exactly the critical length in single species established by Du-Lin (2010).
- As $h \to 0$, $s_{min} \uparrow s^*$. It means that the species u becomes weaker, it becomes more challenge for successful spreading. Similarly, we have such result for v.

END

Thank you for your attention!