Swarming behavior of microtubles driven by dyneins

Ken H. Nagai (Sano lab. JSPS PD (Univ. Tokyo)),

Self-propelled particle

•K. N., et al., *Phys. Rev. E* (2005).

•F. Takabatake, et al., J. Chem. Phys.(2009)

•K. H. N., et al. *Phys. Rev. E* (2013).

Main questions

- * How to gain momentum without external force
- * How to break symmetry

Collective phenomena of active matters

Swarming behavior of active particles

T. Vicsek, Phys. Rep. (2012).

Swarming behavior through a short range interaction

 $\begin{aligned} x_i^{j+1} = & x_i^j + (\mathbf{e}_x \cos \theta_i^j + \mathbf{e}_y \sin \theta_i^j) \Delta t \\ \theta_i^{j+1} = & < \theta_k^j > + \xi_i \end{aligned}$

There is only short-range interaction about the direction of motion.

Univesal Characteristcs!

Nonequilibrium phase transition

Giant Fluctuation

•T. Vicsek, et al., *Phys. Rev. Lett.* (1995).

•G. Grégoire and H. Chaté, Phys. Rev. Lett. (2004).

Experimental evidence

J. Deseigne, et al., 2010.

V. Schaller, A.Bausch, 2010.

$$\langle \xi(t) \rangle = 0, \langle \xi(t)\xi(t') \rangle = \sigma^2 \delta(t-t') \qquad \langle \omega^2 \rangle = \sigma^2 \tau/2$$

 $v_0=8.75 \ \mu\text{m/s}, \ \omega_0=-0.00624 \ \text{rad/s}, \ l=15.0 \ \mu\text{m}, \ \alpha=0.0583 \ \text{rad/s}, \ <\omega^2>=2.48 \times 10^{-4} \ \text{rad}^2/\text{s}^2$

Order parameter

1. Nematic order parameter $S = \langle \exp 2i\theta_i \rangle$

If all particles align parallel or anti-parallel (nematic order), S=1.

If there is no global nematic order, S=0.

2. Density fluctuation $u^2(n)/n_a$

 u^2 is the variance of density in a 60 μ m² × 60 μ m² region. n_a is the average number of particles in the same region.

If the density is not uniform, this value is large.

Microtubule

- No polymerization and depolymerization (stabilized with taxol)
- Microtubules were labeled with Cy3.

Dynein-c

Inner-arm dynein purified from Chlamydomonas flagella

•ATP concentration was 1 mM.

•In vitro motility assay consisted of dynein grafted to glass surface and to microtubules.

•Density of dyneins was 750-2,500/ μ m².

•Average speed of a microtubule was $8.75 \mu m/s$.

Interaction of microtubules

Microtubule aligns parallel or anti-parallel through collision (Short-range nematic interaction)

Difference between dyneins and kinesins

 \odot

• Most microtubules does not change the direction.

Trajectory of an isolated microtubule

 \odot

•Smooth trajectory (finite correlation time of direction of motion) • ω_i/v_0 is the curvature of trajectory.

•Correlation length along the trajectory was $542 \pm 4 \mu m$ (>>microtubule length (10 μm))!

•Average curvature was $-7.1 \times 10^{-4} \mu m^{-1}$ (clockwise rotation).

•Standard deviation of curvature was $1.8 \times 10^{-3} \,\mu\text{m}^{-1}$.

Collective behavior of microtubules

100 µm

Density was 40 μg/ml (5 MT in 100 μm²).
The size of a vortex was 443±64 μm (major axis)
(>>microtubule length (10 μm))!

10 mm x 18 mm

Density Dependence

14.3 µg/ml

 \odot

28.6 µg/ml

57.2 µg/ml

114.5 µg/ml

100 µm

Situation corresponding to the experiments

 τ =171 s, L=7.68 mm, ρ =4.44 × 10⁻² µm², N=2621440

Vortex lattice!

Conclusion and remarks

- Using a mathematical model, we found long correlation time of motion and high density leads to vortex lattice of active particles. Only short-range nematic interaction is needed for vortex lattice (not hydrodynamical one (I. H. Riedel, et al., Science (2005))).
- We experimentally confirmed this type of swarming behavior using motility assay consisted of dynein proteins grafted to glass surface and to microtubules.
- The macroscopical meaning of the finite correlation time of the curvature of microtubule's trajectory are being analyzed.
- Y. S, K. H. N., et al., *Nature* (2012).

 \odot