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Preface

The International Conference on "Reaction-diffusion systems: from the past to the future" was held in memory of
Professor Masayasu Mimura as International Conference on Mathematical Modeling and Applications ICMMA) 2023. The
conference took place from October 31 to November 2, 2023, at Nakano Campus.

The conference aimed to address the contemporary advancements and forthcoming hurdles in the study of complex
pattern dynamics appearing in reaction-diffusion systems. Additionally, it served as a platform to inspire the next
generation of researchers by sharing Professor Mimura's profound dedication to this field. Despite being organized as a
hybrid event, blending online participation with face-to-face interactions, participants actively fostered the advancement of
research in this domain through engaging discussions.

The members of the program committee were Hiroshi Matano, Ken-Ichi Nakamura, Hirokazu Ninomiya and Toshiyuki
Ogawa. The conference was organized by Kota Ikeda, Ken-Ichi Nakamura, Hirokazu Ninomiya, Hiraku Nishimori,
Masashi Shiraishi, Joe Yuichiro Wakano and Toshiyuki Ogawa (chair).

The papers assembled for this volume are based on the presentation slides of the speakers. We are grateful to the MIMS
staff for their support.

February 23, 2024
Toshiyuki Ogawa
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9:40 ~ 9:50 Opening

Arnaud Ducrot (Université Le Havre Normandie, France)

9:50 ~10:30 "Spatial propagation for nonlocal non-autonomous Fisher-KPP equation"
10:40 ~11:20 Joe Yuichiro Wakano (Meiji University, Japan)
e "Ecocultural range-expansion model of modern humans in Paleolithic"
11:20 Coffee Break

< Jong-Shenq Guo (Tamkang University, Taiwan) Al
11:50~12:30 . : . S e e? g y : N
Traveling wave solutions for a three-species diffusive competition system

15230 Break

Hideo Ikeda (University of Toyama, Japan) Fil
"Stability of single transition layer solutions in mass-conserving reaction-diffusion systems with bistable nonlinearity"

14:00 ~14:40

Hirofumi Izuhara (Miyazaki University, Japan)

R TR "Traveling wave solutions of combustion in a narrow channel"
/ 15:30 Coffee Break
Danielle Hilhorst (Université Paris-Saclay, France)
16:20~17:00

"Two phase Stefan problems as the singular limit of competition-diffusion systems arising in population dynamics"

; MEXT Joint Usage | Research Center "Center for Mathematical Model
‘ Meiji Institute for Advanced Study of Mathematical TR 'g'f""ﬁm
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9:50 ~10:30 "The floodgates to pattern formation problems"

Yoshitaro Tanaka (Future University Hakodate, Japan)

Ryl "Keller-Segel type approximation for nonlocal Fokker-Planck equations in one-dimensional bounded domain" | .g

11:20 Coffee Break

' ) Chang-Hong Wu (National Yang Ming Chiao Tung University, Taiwan)
IS 1250 "Spreading fronts arising from the singular limit of reaction-diffusion systems"

Break

l‘.i 14:00 ~16:00 Poster Session (on-site only)

16:00 Coffee Break

Banquet / Poster Awards
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Yoshihisa Morita (Ryukoku University, Japan)

%20 "Segregation pattern in a reaction-diffusion model of asymmetric cell division"

Quentin Griette (Université Le Havre Normandie, France)

10:40 ~11:20 "Speed-up of traveling waves by negative chemotaxis"

11:20 Coffee Break F

Shin-Ichiro Ei (Hokkaido University, Japan)

e -0 "A Billiard Problem in Nonlinear Dissipative Systems"

12:30 Break

Philippe Souplet (Université Sorbonne Paris Nord, France)

i, 14:00 ~14:40 "Convergence, concentration and critical mass phenomena for a model of cell migration with signal production
' on the boundary"

Hiroshi Matano (Meiji University, Japan)

14:50 ~15:30 "Front propagation in the presence of obstacles"

15:30 ~15:40 Closing
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"Spatial propagation for nonlocal non-autonomous Fisher-KPP equation"

Arnaud Ducrot (Universit¢ Le Havre Normandie, France)

In this lecture we discuss existence results of travelling wave solutions and spreading speed for a non-autonomous
Fisher-KPP equation with nonlocal diffusion. We prove that under suitable time averaging properties for the coefficients,
the equation exhibits a definite spreading speed. We also study non-autonomous Fisher-KPP equation on a lattice and
deduce from our analysis some spreading phenomenon for some predator-prey systems on lattice.



Arnaud Ducrot

Université Le Havre Normandie
UR 3821 LMAH
Joint works with Zhucheng Jin

ICMAA 2023
International Conference on
"Reaction-diffusion systems: from the past to the future"
in memory of Prof. Mimura
Meiji University, MIMS.

October 31, 2023
- Abpwret . um
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On the lattice Z, individuals can jump from j to ¢ with probability
p(j, 7). Hence the density of population at i is given by

8“(%” = > oG i)ult, i) — Y pli,j)ult,i)

JEZL JEZ

J

Coming at 7 from any j  leaving i to somewhere




On the lattice Z, individuals can jump from j to ¢ with probability
p(j, 7). Hence the density of population at i is given by

5“éivi) = > oG i)ult, i) — Y pli,j)ult,i)

= JEZ

J

Coming at 7 from any j  leaving i to somewhere

If p(j,i) = J(i — j) depends on the distance between the point j
and i, we get:

‘9“((9'“;”') = 3" 06— jyult,5) - (Z J( - i)) u(t, )

JET JEZ.

vl

TV
discrete convolution



The discrete lattice is changed to the line and the probability
transitions are given with the kernel J(z — y) from y to x.

Non-local heat equation

= / J(x — y)u(t,y)dy — u(t, a:)/ J(y — x)dy
= R

or equivalently,

8ut 2) /J T—y ,y) — u(t, z))dy.




If J has a unit mass, the fundamental solution K (¢t,z — 2’) is
given by:
e Using Fourier transform:

K(t,)(€) = eOD.

e Using exponential !/*":

[ee]

K(t,x) = e "6o(dz) + U(t, ) with U(t,z) ="
k=1

t
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If J has a unit mass, the fundamental solution K (¢t,z — 2’) is
given by:
e Using Fourier transform:

K(t,)(€) = eOD.
e Using exponential !/*":

K(t,x) = e "6o(dz) + U(t, ) with U(t,z) ="
k=1

t

7 (@)

The solution with initial u¢ reads as

u(t,z) = e "ug(x) + rather smooth fonction.



Introduction Travelling waves Spreading speed Fisher-KPP equation on a lattice and applications
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Fisher-KPP equation

Fisher-KPP equation with nonlocal diffusion

Opu(t,x) = /RJ(xy) [u(t,y) — u(t,x)] dy+f(u(t,x)), t>0,2€R,

where f(0) = f(1) =0, f is KPP type, that is:

fis smooth, f(0) = f(1) =0and 0 < f(u) < f'(0)u for
u e (0,1).

Typical example: f(u) = u(l — u).

Monostable

A. Ducrot 7/44



Travelling waves: Special solution of the form

u(t,z) = ¢p(x — ct)

which connects the stationary solutions 0 and 1
¢ is the profile and ¢ is the wave speed
Wave profile equation: ¢ = ¢(z) satisfies

{ /R J@) [B(z — v) — B()] dy + cd'(2) + F(#() = 0, z €R

¢(—o0) =1 and ¢(+o0) = 0.




¢ Wave profile ¢ satisfies

Je JW) [6(2 — y) — ¢(2)] dy + ¢’ (2) + f(#(2)) =0,
¢(—o0) =1 and ¢(+o0) = 0.

C
leading edge

0 ———
¢ At the leading edge ¢ ~ 0 and
Je K@) [6(z —y) — ¢(2)] dy + c¢'(2) + f'(0)¢(2) ~ 0.

1




¢ Wave profile ¢ satisfies

Je JW) [6(2 — y) — ¢(2)] dy + ¢’ (2) + f(#(2)) =0,
¢(—o0) =1 and ¢(+o0) = 0.

C
leading edge

0 ———
¢ At the leading edge ¢ ~ 0 and
Je K@) [6(z —y) — ¢(2)] dy + c¢'(2) + f'(0)¢(2) ~ 0.
For ¢(z) = e=**, with A > 0 we get:

/R J(y)[eN — 1])dy — Ae + f'(0) = 0.

1




Theorem (Schumacher 1980; Carr, Chmaj 2004;...)

If f is of KPP type and J is a thin-tailed kernel, that is

38 >0, [ e’ I(y)dy < oo, there exists a travelling wave
solution with speed ¢ if and only if ¢ > ¢*. The travelling wave
solution is unique up to translation. The minimal wave speed c*
is characterized by

= )1\1;% At (/R J(y)[eV — 1]dy + f'(O)) :

* Monostable type: Coville, Dupaigne 2007; Liang, Zhao
2007; Yagisita 2010; Fang, Zhao 2014;...

e Bistable or Ignition type: Bates, Fife, Ren, Wang 1997;
Chen 1997; Coville, Dupaigne 2005;...



Ou=Jxu—u+ f(u), t>0,z€R, u0,z)=mup(z).

Theorem (Lutscher, Pachepsky, Lewis 2005; Liang, Zhao
2007;...)

Assume that J is thin-tailed and symmetric. If the initial data ug
is compactly supported, then there exists ¢** > 0 such that

lim sup u(t,z) =0, Ve > ¢,
t—ro0 |z|>ct

lim sup |1 —u(t,z)| =0, Vce|0,c*).
t—o00 |(E|Sct

c** Is called the spreading speed and we have c** = c*.
Remark: Non-symmetric kernel .J: Xu, Li, Ruan 2021.



Study the propagation for the non-autonomous problem

Byult, ) = /R K(t, 7 — ) [u(t, y) — u(t, z)] dy + F(t, u(t, z).

¢ Generalized travelling waves

e Spreading speed

e discrete convolution: Fisher-KPP on lattice

e Application for predator-prey system on lattice.




Study the propagation for the non-autonomous problem

Byult, ) = /R K(t, 7 — ) [u(t, y) — u(t, z)] dy + F(t, u(t, z).

¢ Generalized travelling waves

e Spreading speed

o discrete convolution: Fisher-KPP on lattice

e Application for predator-prey system on lattice.

for simplicity we choose f(t,u) = p(t)u(l — u).



Byu(t, z) = /R K (@ — ) [u(t,y) — u(t, 2)] dy + F(t u(t,2)).

AT >0 f(t+T,u) = f(t,u) of KPP type and thin-tailed kernel.
¢ Pulsating wave [Shigesada, Kawasaki, Teramoto 1986;
Alikakos, Bate, Chen 1999]:

u(ta I) = d)(t’ T — Ct)7 ¢(t7 ) = d)(t + 7T, ')7
¢(t,—o00) =1 and ¢(t, +oo) = 0, unif. fort € R.




Definition (Berestycki, Hamel 2007, 2012; Matano 20083;
Shen 2004)

A generalized transition front connecting 0 and 1 is an entire
solution u = u(t, ) and an interface function X : R — R s.t.

1, asx — —oo,
0, asz — +oo;

unif. for t € R.

ult,z + X(8) = {




e Existence of generalized transition front [Shen, Shen 2016]

Byult, z) = /R Kz - ) [u(t,y) — u(t, z)] dy + F(t ult, z)),

where f is of KPP type and K is a thin-tailed kernel.




Definition (Berestycki, Hamel 2007, 2012; Matano 2003;
Shen 2004)

A generalized transition front connecting 0 and 1 with interface

X is a solution u = u(t, x)

lim wu(t,z+X(t)) =1 and ll)l}_l u(t,z+X(t)) = 0, unif. fort € R.

T—r—00

Definition (Nadin, Rossi 2012; Shen 2011)

A generalized travelling wave solution « with speed function

c = c(t) € L*°(R) is nothing but a generalized transition front
with a globally Lipschitz continuous interface function




¢ Least mean value : for g € L*°(R),

T

1
= i inf — .
o) = lim inf7 | g(t+s)ds




¢ Least mean value : for g € L*°(R),

T

1
= i inf — .
o) = lim inf7 | g(t+s)ds

¢ Mean value: for g € L>°(R),

1 T
= lim — if. .
(9) o T/o g(t+ s)ds, unif. fort e R

@ Some typical classes of heterogeneities admit a mean
value.
(e.g. periodic, almost periodic, so on...)

@ If g € L>°(R) admits a mean value, then (g) = |g].
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o= [ Kt,a—y) ult.y) ~ ult. )] dyn(®u (L - w), (t3) € B2
R

¢ Aim: existence of generalized travelling wave solution with
speed c = ¢(t) € L*(R).




o= [ Kt,a—y) ult.y) ~ ult. )] dyn(®u (L - w), (t3) € B2
R

¢ Aim: existence of generalized travelling wave solution with
speed c = ¢(t) € L*(R).

* Wave profile ¢(t, z) == u (t, 2+ [l e(s) ds) (if smooth
enough) satisfies

Brp—c(t)Do6 = /R K (t, 1) [6(t, 2—)—(t, 2)] dy+1(t)p(1—9),
with
¢(t,—o0) =1 and ¢(t, +oo) =0, unif. fort € R.



Assumption:

p € L*(R) and 1%g]fR/dL(t) > 0.

Assumption:
() K is nonnegative and K € Ly (R, L{°(R)).
(il) (Thin-tailed) For some A > 0,

/RHK(-,y)IIooeAydy < 0.

(i) limsup M = 00, Where
A—abs(K)~

abs(K) :=sup{A > 0: [ [|[K(-,y)|loce dy < o0} .
- Abpwrt . om



e Linearized equation

Byt —c(t)up— /R K ()08, )0t 2)] dy—alE)ap = 0.

* Ansatz
Y(2) == e, A€ (0,abs(K)).
® Derive

ot) = c()(t) i= BEEY) [eAyA_ Uy + 1) 5 ¢ (0, abs(K)).




e Linearized equation

Byt —c(t)up— /R K ()08, )0t 2)] dy—alE)ap = 0.

¢ Ansatz
Y(2) == e, A€ (0,abs(K)).
¢ Derive
ot) = c()(t) i= BEEY) [eAyA_ Uy + 1) 5 ¢ (0, abs(K)).

Lemma (Decreasing property)
There exists \* € (0,abs(K)) s.t.

{A>0:3N > M\VEe (W], [e(A) — (k)] >0} = (0, A%).

Moreover, A — |c(\)] is decreasing in (0, A*).




Theorem (Existence)

For each X\ € (0, \*), there exists a generalized travelling wave
solution with speed function c¢(\) € L= (R).

(le(A*)], 0) C {least mean value of admissible speed}




Theorem (Existence)

For each X\ € (0, \*), there exists a generalized travelling wave
solution with speed function c¢(\) € L= (R).

(le(A*)], 0) C {least mean value of admissible speed}

Theorem (Nonexistence)

Set c(\ = [p K(t,y)eMy dy. There is no generalized
travel//ng wave solut/on with speed function ¢ € L>°(R)
satisfying

Le] < [e(A)]-



Corollary
If K(-,y) foreachy € R and u(-) admit a mean value, then we

get
= le(\)]| = [e(\)]

and

{least mean value of admissible speed} = either (c¢*, ) or [¢*, x0).

Open question for the mean value c¢*.



e For A € (0,\%),

Super-solution: ¢(t, z) := min {17 e_)‘z} ,

Sub-solution: ¢(t, z) := max {0, e — eb(t)e—(AJrh)z} ,

where h > 0 and b € W (R).




e For A € (0,\%),

Super-solution: ¢(t, z) := min {17 e_)‘z} ,
Sub-solution: ¢(t, z) := max {O, e M — eb(t)e_(k"'h)z} ,
where h > 0 and b € W (R).

¢ The solution v" (¢, z) of Cauchy problem

{@u (t,x) = [ K(t,y) [u(t w—y) —u(t, )] dy + p(t)u(l — u),

(—n,z) = d(— n,x—fo (N)(s) ds).




e For A € (0,\%),

Super-solution: ¢(t, z) := min {1, e_)‘z} ,
Sub-solution: ¢(t, z) := max {O, e M — eb(t)e_(k"'h)z} ,
where h > 0 and b € W (R).

¢ The solution v" (¢, z) of Cauchy problem

{@u (t,x) = [ K(t,y) [u(t w—y) —u(t, )] dy + p(t)u(l — u),
(—n,z) = ¢(—n,z — Jo " e(A)(s) ds).

¢ Regularity estimates for {u"},,>1: Lipschitz estimates
obtained by the comparison principle.
® passing to the limit n — oo
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Aim: Study the spreading speed for the problem:

uw(0,z) = up(z), 0 <wy<1,up#0, and compact support.

{atu = [ K@) [ult,z —y) —u(t,2)] dy + p(t)u(l —u), ¢t >0,z €R




Aim: Study the spreading speed for the problem:

uw(0,z) = up(z), 0 <wy<1,up#0, and compact support.

Assumption: The function x is uniformly continuous, bounded,
and inftz() ,Lt(t) > 0.




Aim: Study the spreading speed for the problem:

o = [p K(y) [u(t,z —y) —u(t,z)] dy + p(t)u(l—u), t >0,z eR
u(0,z) = uo( ),  0<wuy<1,up #0, and compact support.

Assumption: The function x is uniformly continuous, bounded,
and inftz() ,u(t) > 0.

Assumption:
The kernel K : R — [0, o0) is continuous, integrable and

(i) Jaa >0 St Jr K(y)e*¥dy < oo.

(i) K(0) >
i) ) > B = o K s
Ay
(iv)  limsup JeKwevdy _
A—abs(K)~



e Similarly, introduce

c(M)(t) = Jr K(y)ekyd)g\/ =i ,u(t), A€ (0,abs(K)).

* There exists \* € (0,abs(K)) s.t.

L] = | 0B e LM

o |u] > K = [c(\Y)] > 0.




Theorem
Let u be a solution with a compactly supported initial data
0 < ug < 1. Then we have

(¢) lim sup u(t,x) =0, Yo > 0,
t=ro0 a> [¥ e(\*)(s)ds+ot

(¢¢) lim sup |1 —wu(t,x)| =0, Ve e [0, [c(A¥)]).

£=00 1c(0,ct]

Remark:

* |f the coefficients admit a mean value, then one has
% fot c(A*)(s)ds — |c(\*)] as t — oco. We obtain the exact
spreading speed |c(\*)].



Theorem (Slower exponential decay initial data)

Let u(t,x) be the solution with an initial data ug, 0 < ug <1,
ug # 0 and such that ug(z) ~ Ce™* asz — oo for A € (0, \*).

Then
() lim sup u(t,z) =0, Yo > 0;
=00 a:Zf(f c(\)(s)ds+ot
(73) lim sup |1 —u(t,x)] =0, YO <c < |c(N)].
t—00 z€[0,ct]

Remark: symmetrical argument yields the spreading properties
to the left.

Different decay rates can be considered in the two sides:

— different speeds of propagation.



Lemma
Letu € BUC([0,00) x R) be the solution. Define the limit set
w(u) by u € w(u) if we have {(t,,x,)} with t, — oo and

u(t + tn, x + x,) — a(t, z), loc. unif. for (t,x) € R?, asn — oo.
Let X = X (t) : [0,00) — RT continuous and assume that
(H1) liminf u(¢,0) > 0;
t—o0
(H2) Je > 0 s.t. ligr_l)infﬂ(t,O) > e, Vi ew(u)\ {0};
(e.e]
(H3) liminfwu(t, X(¢)) > 0.
t—00
Then for any k € (0,1), one has

liminf  inf w(¢,z) > 0.
t—o0 0<z<kX(t)



e Examples of propagating path X (¢): X (t) = ct,
X(t) = f(f c(s)ds,...

e Without the thin-tailed kernel assumption.

¢ The proof of the persistence lemma is inspired by Ducrot,
Giletti, Matano (CVPDE 2019); Ducrot, Giletti, Guo,
Shimojo (Nonlinearity 2021).
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We consider the problem for ¢ > 0, i € Z:

—w (1) =Y J(t D) w(t,i—g) —w(t, )] +p()w(t, i) (1—w(t, i),

JEZ
with an initial data w(0, 7) = wq(i) compactly supported.

We assume that:

e Assumptions for the non-negative kernel: J € I1(Z, L>(0,0))
is symmetric, thin-tailed, inf;~ J (¢, £1) > 0. It has a mean
value and

12 M 5 00 as A — abs(J).
Y/

e Assumption for ¢t — p(t): uniformly continuous and has a
mean value.



Approximation w(t,i) ~ e 2=X{®) with X\ > 0 yields

AX'(8) = D J(t, )N — 1] + (),
JEL
Define .
ex(®) = AT I 5) e — 1+ A ()
JEL
and its mean value
=AY (JGNEY =1+ AN w).
JEL
Then there exists A* € (0,abs(J)) such that
X B is f:iecreaémg on (0, \¥)
increasing on (A*, abs(J))



Theorem
If the initial data wo is compactly supported then the solution
satisfies

lim sup w(t,i) =0 forall ¢ > c* := ¢y~
and

lim sup |1 —w(t,i)]=0for0<c<c".
t—o00 |i|§ct

Extend previous results Weinberger 1982; Liang and Zhao
2007; Fang, Wei, Zhao 2010; Cao and Shen 2017; Liang and
Zhou 2020, ...



e For the lower bound of the speed, we construct a suitable
sub-solution with small speed.

e Then coupling with dynamical system arguments and limiting
arguments. For limiting arguments, we have to take care of all
possible limit equations obtained by time shift ¢ + ¢,, with

t, — o0.




Aim: Study the spreading speeds for the prey-predator system
fort >0,ieZ

du(t, i) = X Jit f)lu(t i — J) = ult,i)]

JEZ
+r(t)u(t, z)(l — u(t, i))—p(t)u(t, i)v(t,1),
So(t,)) = 3 Ja(t, §)[v(t,i — §) — v(t,0)]

JEZ
+q(t)u(t,i)v(t,i) — v(t)v(t, 1),
\u((), i) = up(2) and v(0,7) = vo(7), i €Z.

* Prey: u = u(t,i) and Predator: v = v(¢,1).




Aim: Study the spreading speeds for the prey-predator system
fort >0,ieZ

(

Loyt i) = >, At f)lulti — ) —u(t, )
+r(t)u(t, i) (1 — u(t, ) —p(t)u(t, i)v(t, i),
Fo(t,) = 2 Dt )i~ 5) — vt )]

JEZ
+q(t)u(t,i)v(t,i) — v(t)v(t, 1),
\u((), i) = up(2) and v(0,7) = vo(7), i €Z.

* Prey: u = u(t,i) and Predator: v = v(¢,1).
¢ |Initial data ¢ and v, are both compactly supported.



Aim: Study the spreading speeds for the prey-predator system
fort >0,ieZ

(

frult ) = 3 It 3)lult i - 5) = ult, )
+r(t)u(t, i) (1 — u(t, i) —p(t)ult, )v(t, 1),
Fo(t,) = 2 Dt )i~ 5) — vt )]

JEZ
+q(t)u(t,i)v(t,i) — v(t)v(t, 1),
\u((), i) = up(2) and v(0,7) = vo(7), i €Z.

* Prey: u = u(t,i) and Predator: v = v(¢,1).
¢ |Initial data ¢ and v, are both compactly supported.

All coefficients are uniformly continuous and uniformly positive;
all admit a mean value and inf;>¢ (q(t) — v(t)) > 0.



As for the Fisher-KPP equation, we assume that the kernels
are:

Jy, are nonnegative, J;. € I1(Z, L°(0, 00)),
thin-tailed and symmetric, inf;>q Ji (¢, £1) > 0,
mean value and

-t Z Ji(-,5))eN — 0o as A — abs(J).
JEZL




e If v = 0, then w satisfies

Sty ) = 32 I )t i~ )~ (e, )]+ (e, ) (1 u(t, ).

JEZ
Spreading speed:
w = -1 i [eN — :
o Ae(o,lgzl,g(Jl)))\ (Z(Jl( 3)le 1] + (r))

JEZ




e If v = 0, then w satisfies

= Nt Pt i— §) —u(t, i) +r()ult,i) (1—u(t, i)).

JEZ

Spreading speed:
¢, = inf A7t (Z(Jl(-,j))[e)‘j — 1]+ (r))

AE(0,abs(J1)) jez
o If u = 1, then v satisfies

—v (t,1) ZJQ (t, )t i —7) —v(t, )] + (¢(t) — v(t)) v(t, ).

JEZL
Spreading speed:
oo -1 7]_1 .
= 7 (SR 1+ -0

JEZ



Theorem (Slow predator case)
Assume ¢, > c}. If the initial data are compactly supported then
(u,v) satisfies:

(i) hm sup u(t,i) = 0,Ve > ¢k
= |>ct

(ii) for all ¢ < ¢1 < co < ¢, and for all ¢ > ¢, one has:

lim sup |1—wu(ti)|=0and lim sup v(t,i) = 0;

=g c1t<|i|<cat =ee |i|>ct
(iii) for all ¢ € [0, c;) one has:

liminf inf v(¢,7) > 0.

t—00 | |<ct



Theorem (Slow predator case)
Assume ¢, > c}. If the initial data are compactly supported then
(u,v) satisfies:

(i) hm sup u(t,i) = 0,Ve > ¢k
= |>ct

(ii) for all ¢ < ¢1 < co < ¢, and for all ¢ > ¢, one has:

lim sup |1—wu(ti)|=0and lim sup v(t,i) = 0;

=g c1t<|i|<cat =ee |i|>ct
(iii) for all ¢ € [0, c;) one has:

liminf inf v(¢,7) > 0.

t—00 | |<ct



Create videos with https://clipchamp.com/en/video-editor - free online video editor, video compressor, video converter.

SlowPredator.mp4
Media File (video/mp4)


Theorem (Fast predator case)

Assume ¢, < ¢} and (ug,vo) are compactly supported. Then
(u,v) satisfies:

(i) im sup [u(t,?) +v(t,i)] = 0,Ye > c;

E=00 41>t
(ii) for all ¢ € [0, c},) one has:

liminf inf v(¢,7) > 0,

t—=00 |i|<ct

0 < liminf inf w(t,7) < limsup sup u(t, i) < 1.
t—=00  [i|<ct t—oo  |i|<ct




Theorem (Fast predator case)

Assume ¢, < ¢} and (ug,vo) are compactly supported. Then
(u,v) satisfies:

(i) im sup [u(t,?) +v(t,i)] = 0,Ye > c;

E=00 41>t
(ii) for all ¢ € [0, c},) one has:

liminf inf v(¢,7) > 0,

t—=00 |i|<ct

0 < liminf inf w(t,7) < limsup sup u(t, i) < 1.
t—=00  [i|<ct t—oo  |i|<ct




Create videos with https://clipchamp.com/en/video-editor - free online video editor, video compressor, video converter.

SlowPrey.mp4
Media File (video/mp4)


Since u ~ 0 implies v ~ 0 we obtain

Lemma ( Pointwise estimates—(i) )
For each ¢ > 0, there exist Ms > 0 andTs5 > 0 s.t.

v(t,1) < 0+ Msu(t,i), Vt>Ts, Vi€ Z.




Since u ~ 0 implies v ~ 0 we obtain

Lemma ( Pointwise estimates—(i) )
For each ¢ > 0, there exist Ms > 0 andTs5 > 0 s.t.

v(t,1) < 0+ Msu(t,i), Vt>Ts, Vi€ Z.

Sultyi) = Y it ultyi ) = u(t, )] + r(e)u(l = w) — p(Byuv,
JEZ

> Z Ji(t, J)u(t,i—7) —u(t,d)] + rt)u(l —u) — p(t)u(d + Mu)
JEZL

Hence u spreads faster than speed ¢.



If c < ¢} and v~ 0thenu~1.

Lemma ( Pointwise estimates—(ii) )
Fix ¢ € [0, c}), for each o > 0, there exist M, > 0 andT,, > 0 s.t.

1—wu(t,i) < a+ Myv(t,i), Vt>T,,V]i| <ct.




If c < ¢} and v~ 0thenu~1.

Lemma ( Pointwise estimates—(ii) )
Fix c € [0,¢}), for each o > 0, there exist M, > 0 and T, > 0 s.t.

1—wu(t,i) < a+ Myv(t,i), Vt>T,,V]i| <ct.

Z Jao(t, J)v(t, i —7) —v(t,9)] + q(t)uwv — v(t)v
JEZL

> Z Ja(t, j)[v(t, i — j) — v(t,9)] + v(q(t) — v(t) —a — M), |i| < ct.
JEZ

KPP type equation on a growing domain |i| < ct.



Thank you for your attention.
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"Ecocultural range-expansion model of modern humans in Paleolithic"

Joe Yuichiro Wakano (Meiji University, Japan)

Modern human range expansion and the resulting extinction or assimilation of archaic humans such as Neanderthals
took place roughly 50,000 years ago. This phenomenon is recently very actively studied by using genetic methods such
as ancient DNA analysis. In this talk, a reaction diffusion model is proposed with emphasis on archaeological and
ecological aspects. Range expansion dynamics are studied as the traveling wave solutions in the system.



Ecocultural range-expansion model of
modern humans in Paleolithic

Joe Yuichiro Wakano
School of Interdisciplinary Mathematical Sciences, Melji Univ

in collaboration with
Kenichi Aoki (Meiji Univ), Seiji Kadowaki (Nagoya Univ)
William Gilpin, Marcus Feldman (Stanford Univ)

2023/10/31 - 11/2 ICMMA2023 (10/31 10:40-11:20)
"International Conference on "Reaction-diffusion systems: from the past to the future*
— in memory of Prof. Masayasu Mimura —



Self introduction of J. Y. Wakano and my memory of Mayan

> 1998-2001 Ph.D student (Centre for Ecological Research, Kyoto Univ)
» Evolutionary game theory, models in behavioral ecology, etc.
> Japan Association for Mathematical Biology (JAMB), found in 1989
1989-1992 Chief: N. Shigesada, 1992-1994 Chief: M. Mimura

> 2001-2007 post—Doc (Univ. of Tokyo)
» Pattern formation of bacterial colony
> 2001 JAMB-SMB Joint Conference on Mathematical Biology (Hawaii, Hiro)
» 2003 JSMB found (Japanese Society for Mathematical Biology)
Frequent visit to Mimura—sensei’s lab at Ikuta Campus, Meiji University

» 2004 Mayan became a professor at School of Science and Technology, Meiji Univ.
» His ambition: foundation of a new research area

» 2007-2013 Specially appointed associate professor, Meiji Univ.
> Meiji Institute for Advanced Study of Mathematical Sciences (MIMS), found in 2007
» Daishin Ueyama (professor) and H. Izuhara (grad student)

» 2008-2012
» Global COE Program “Formation and Development of Mathematical Sciences Based on

Modeling and Analysis” (BRZEHIEF O EFKE) Leader: M. Mimura

» Mayan, Daishin, and I were central members to prepare the application

» Mayan looked so nervous before and after the interview. He looked so happy when we
got a good news

> K. Ikeda (post—Doc)




Self introduction of J. Y. Wakano and my memory of Mayan

» 2009-2012
» PRESTO (&ZHF) “Innovative model of biological processes and its
development”
Mayan was one of advisory professors, and pushed me hard to win this grant
» Face—to—face lessons on how to talk, a treasure in my life

» 2011 Graduate School of Advanced Mathematical Sciences, Meiji Univ
> Y. Tanaka (a grad student)

» 2013 Interdisciplinary Mathematical Sciences, Meiji Univ
» Department of Mathematical Sciences Based on Modeling and Analysis (3R &
HEEFRED)

> 2013-2014 JSMB President: M. Mimura Chief: J .Y. Wakano

» 2021 Mayan passed away

Zu J, Mimura M & Wakano JY (2010) The evolution of phenotypic traits in a predator-preysystem subject to Allee effect. Journal of
Theoretical Biology 262:528-543

Wakano JY, Ikeda K, Miki T & Mimura M (2011) Effective dispersal rate is a function of habitat size and corridor shape: mechanistic
formulation of a two-patch compartment model for spatially continuous systems. Oikos 120: 1712-1720

Scotti T, Mimura M & Wakano JY (2015) Avoiding Toxic Prey May Promote Harmful Algal Blooms. Ecological Complexity 21:157-
165



joint project of archeology, environmental sciences, cultural anthropology, and

mathematical modeling and analysis

Scientific Research on Innovative Areas,

Cultural History of PaleoAsia | 3 MEXT ot N Prfct

S

nscultures in Asia
2016-2020

Integrative research on the formative processes of modern human cultures in Asia



Range expansion of modern humans
Second wave of out-of-Africa  100~50 Kya.

ﬂ
Neanderthals Demsovan/ Ji g NN

/ ° Neanderthals/ 5 Empty °
H. erectus

Voo Empty




Range expansion of modern humans
Extinction of archaic humans ~ 30 Kya.




Range expansion of modern humans

Oppenheimer 2012



Pruffer et al. (2014)

LETTER Slon et al. (2018)

https://doi.org/10.1038/541586-018-0455-x

The genome of the offspring of a Neanderthal
mother and a Denisovan father

Viviane Slon"7*, Fabrizio Mafessoni'”, Benjamin Vernot"’, Cesare de Filippo', Steffi Grote', Bence Viola®?, Mateja Hajdinjak',
Stéphane Pey regnel Sarah Nagell, Samantha Brow n4, Katerina Douka> , Tom Higham?, Maxim B. Kozlikin?,
Michael V. Shunkov®¢, Anatoly P. Derevianko?, Janet Kelso!, Matthias Me} er!, Kay Priifer{& Svante P4ibolf

Svante Paebo (2022 Nobel Prize)



Bae et al. (2017, Science)



Cultural Evolution in Paleolithic

™ 10kya
Upper Paleollthlc transition (LZFIBRI/EMN)
saplens
50kya
Homo
sapiens
neanderthalensis
250kya

Homo
erectus

10



Spatial dynamics of genes (species)
VS
Spatial dynamics of culture

Culture is not completely determined by genes (species)
— cultural inheritance is not identical to genetic inheritance

"Modern humans” by their DNAs
"Modern humans" by their behavior and culture

Here we define modern humans by their DNAs, and aim to
study how spatial dynamics of modern human culture are
related to those of modern humans 11



What makes cultural differences ?
learning hypothesis

* Innate (genetic) difference in learning ability

« Wakano & Miura (2014), Aoki & Feldman (2014), Lehmann et al. (2013), Aoki et
al. (2012), ... and much more

modern Neanderthals
humans

smart ?? stupid ??

12



What makes cultural differences ?
population size hypothesis

« Small population results in low culture

Henrich (2004) claims that the loss of adaptive culture is triggered by
decreased population size by using empirical data in Tasmania and
analyzing mathematical models.

population decrease = lower culture
population increase = higher culture

Many theoretical studies (Shennan 2001; Henrich 2004; Strimling et al.
2009; Mesoudi 2011; Lehmann et al. 2011; Aoki et al. 2011; Kobayashi &
Aoki 2012; Forgaty et al 2015)

13



Positive feedback loop
between culture and population size

Low/high culture results in small/large population

— Previous studies

* Ghirlanda & Enquist 2007; Aoki 2015; Gilpin et al. 2016
— Positive spiral

« population increase = higher culture = population even increases = ...
— Negative spiral

« population decrease = lower culture = population even decreases = ...

Different states can appear in genetically homogeneous
population.

Previous models of positive feedback loop
did not explicitly model spatial structure

14



Single species model

15



Model Assumptions

* Culture of an individual is either skilled or non-skilled
— Newborns socially learn culture from a random individual of the same
species at the same location
— Skill is lost at rate y (bad memory, lack of practice)
— Non-skilled changes to skilled at rate § (individual learning)

« Carrying capacity is increased when local population
carries more skilled individuals
— Skill gives benefit to local population
— Population size hypothesis

 Individuals randomly migrate in 1-D continuous space

— modeled by diffusion equation
— migration of skilled individuals results in spatial spread of skills

16



Reaction diffusion system
(single species case)

skilled
population density 0 0? N changes to
(skilled + non-skilled) a N(x,t) = Dy N +rN {1_I\/I(Z)} /non-skllled
density of 0 B 0° N
skilled individuals 2D =D—72+1Z vy | +5(N-2)
increase of skilled non-skilled
due to newborns changes to skilled
learning skill
. _ M, (Z<Z%) Low, when skilled < Z*
carrying capacity M(Z)= .
My (222%)  high, when skilled > 7*

17



total density

Critical density of skilled, Z*

density of skilled individuals

two locally
stable equilibria

(N!Z):(ML’avIL)
(Niz):(MH’a\/IH)

0 — o
y+0

18



Traveling wave solution (TWS)

competition between populations at "high" and "low" equilibriums

2
INKH) =D N+m[1-—
ot OX M(2)

0 0* N
—Z(Xt)=D——Z+r1Z|1-—— |- )Z +5(N - Z)
ot OX M (Z)

density N
[High density + M,
High skilled density |

['Low density +

skilled Z M, Low skilled density]

19



Special solution (invariant manifold)

2
INKH) =D N+m[1-—
ot OX M(2)

0 0* N
—Z(Xt)=D——Z+r1Z|1-—— |- Z +5(N - Z)
ot OX M (Z)

N(x,t) =u(x,t)
Z(x,t) = Qu(x,t) Isaspecial solution of the system
o
y+0

0 =

innovation-forgetting balance

This invariant manifold is globally attracting in PDE sense (maximum principle).
20



Bistable TWS e.g.) Allen-Cahn eq.

2 M L<L*
8—u:Da—l:Hu 1-— M(Z)=: " (2 <2%)
ot OX M (6u) M, (Z>2%)

Reaction term dynamics
4 )
u=0 u:ML UZMH
= ® —— ®
u=2%*/6
\ /

The direction of TWS is determined by the sign of

" 2 pp 2 +\3
J'mu 1= e [ o1 gy = Me =M 2P LT (Z j
M, M, =0 |7 M, 6 3(M, M, |\ @

21




Traveling wave can progress in either direction

| 1o
SHEN B ®
-0 M, Z*/6 M,
y M,
N My
5@ e
=0 IVIL Z*[0 MH ML
y,

The high equilibrium does not always win.

22



M, =18 M, =6
9 skilled + 9 non-skilled 3 skilled + 3 non-skilled
Africa Asia

Both high and low equilibria are locally stable.

23



M, =18 M, =6
9 skilled + 9 non-skilled 3 skilled + 3 non-skilled
/*=4
.. .
© Q )
e © O

Africa Asia

When they start to randomly migrate,

high equilibrium (advanced culture) does or does not spread.
24



M, =18 M, =6
9 skilled + 9 non-skilled 3 skilled + 3 non-skilled

Africa

When they start to randomly migrate,
high equilibrium (advanced culture) does or does not spread.

Asia

25



Condition for high equilibrium to spatially invade
low equilibrium

1
Z*<0|:MLMH(MH +ML):|3
2

6 = o M, =M, =aoK
7/+5 H L

z*{ %) j[a(lm)f
K y+0 2

 When lower number of skilled is required
to transition to high carrying capacity
« or when skill is easier to obtain / harder to lose
« or when skill has larger impact on carrying capacity

26



Two species model

27



(additional) Assumptions

Two species: modern humans and Neanderthals

No innate difference in abilities of the two species
— the same learning ability, the same demographic ability

Within each species, carrying capacity is increased when
local population carries more skilled individuals

Ecological resource competition between the two species
— weaker than intraspecific competition
— different species use difference niches with some overlap

28



Lotka-Volterra type reaction diffusion system
(Neanderthal vs. modern humans)

2
9N, (x1) = D(j N+rN{1—N1+ﬂ\I2}
X

ot M(Z,)
Neanderthals ,
0 9, N, +[bIN
—Z,(x,)=D—2Z,+rZ,|1-- 21-9Z,+5(N, -Z
ot (X,1) ox2 1|: M (Z,) } Y, +6(N, —2,)
2 L
I N, (x )= DN, + N, [1- N BN,
modern ot OX° M(Z,)
humans
2
97.0)=D27 +rz7,|1- N, bl —9Z,+8(N,~Z,)
ot OX” M(Z,)
(Intraspecific) Carrying capacity = M, (Z>2%)
(Interspecific) Competition coefficient O<b<1 . 29

niche overlap



M(Z,)

2
972,0)=D2 7, 1rz,|1- NutPN,
ot OX M(Z,)

0 0? N, +bN
a Nl(X’t) = Dy Nl + rN1|:1—1—2}

}_721"‘5([\'1_21)

0 0 N, +bN
a NZ(X,t) = Dy NZ + I‘N2|:1—#}

M(Z,)
0 _p? _ N, +bN, |- _
S Z:(x=D_ zz+rz{1 M(ZZ)} Z,+5(N,~Z,)
oz _ oN.
Z.(X,1) N 5z O
(X, 1) =—"Z a2 _sn_ 1 "oxt T ax?
A1) N, (x.0) o A =005 A)+ D5

Global attractor exists: m,_ A(x,t)=6

innovation-forgetting balance

2
L
ot OX M (6N,)
2
8;2 =D 5(3'\12 +rN{1— N, +bN1}
X M(EN,)

30



When interspecific competition (b) is very weak

*
ML<Z—< M., <ﬂ
0 b

31



When interspecific competition (b) is intermediate

32



Spatial dynamics of population and culture

* Depending on initial distribution, various dynamics occur.

« For explanation, we initially set

Modern humans only, Neanderthals only,
high equilibrium low equilibrium
00 Lo, ©
°co, 00l ©
@00 © ©
Africa Eurasia
space

(For simplicity, we only consider cases when high equilibrium defeats low.) 33



Skilled densities (Z1, Z2)

In |t| al con d |t| on (t:O) are not shown since we always

observed quick convergence to
Z,(x,1) =N, (x,1)

African side (left)

No Neanderthals. Modern humans at high-skill-high-density equilibrium
Eurasian side (right)

Neanderthals at low-skill-low-density equilibrium. No modern humans.

68

L)
> | Modern
‘n
2w N Nean N,
@
U 28
18
0 a 58 188 158 288 258 388 358 488 458 oaa
. X .
Africa Eurasia

34
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Interspecific competition, b

very weak iIntermediate
A, bPmm. B 2 EEMML .

Time
0s
0s

) =Y
o o
w e o
= N
% 40! 2 Modern Humans 40!
c
2
E 20 20+
3. fN, Neanderthals
o 1 1 o L 1
8 0 50 100 150 0 50 100 150

Space Space

36



00l

2 Case A : very small b
Vi
.E 40| Modern Humans
c
-% 20! Between the initial two states,
_E_ ﬂean Serthals two additional states appear
e % 50 100 150
Space

(N, MH) = (low, high) : Final state, coexistence of the two species

(N, MH) = (low, low) : Temporal state
This state can last very long at locations
very far away from the initial contact

Temporal symmetric coexistence might accelerate genetic interbreeding.
Final asymmetric coexistence might result in complete assimilation of
Neanderthals by modern humans.

[Very weak interspecific competition = assimilation scenario}




00L

Case B : intermediate b l

Modern Humans

Between the initial two states, 20! Neanderthals

one additional state appear

0 50 100 150
Space

(N, MH) = (zero, high) : Final state

(N, MH) = (low, low) : Temporal state
This state can last very long at locations
very far away from the initial contact

Finally, modern humans replace Neanderthals.
Local temporal coexistence persists long only at locations very far.
Limited genetic interbreeding is expected.

[ Intermediate interspecific competition = Replacement J




The direction of the second wave:
bistable case

v o 7 « Approximating a TWS trajectory by a
5 - P. - line segment, we obtain
/1o L’ <—T 2
%: Da I\ZI2 FIN,| 1 N, +b(M_ —DbN,)
ot OX M (EN,)
- 1 I ‘7,
M. « This yields the (approximate)
| condition for ‘high’ equilibrium
L - 2 spatially spreads:
0 G S : .\’%_T N,
. o1 My WD v [(My-bM_)/0-b2) _n,+b(M_—bn,)
P(Z )_IML/(1+b) m2|:l M2(¢92n2) :|dn2
High density region spreads in TWS if (1‘b;)z* is small s.t.
o @-b)Z*) (L-b*Z*) 2 oy 2
| 3| ~M, (M2 +(@1-30)M,, M, +b°M,?)<0 .



Speed (rD) "

Numerics agree with these analytic predictions

b < ML/MH b> ML/MH
2} 0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0— 3 r 1 linear
. . -
®e, 00—t conjecture
\ i ]
*eq * e, speed
[ ) 9}
°, ® o °
0 . . [ ] [
A °, 2 ° o
»
®
@
=1 @ °
¢ L ]
[ )
h.-.-.-.-.-.—.—.-.-.—.—.—.—.—.—.—.—.—.—.—.—.—.—'—.-
=2 | 4 L
10 1I2 1|4 1IE 1I8 ZIIJ 2|2 10 1I1 1I2 1|3 1|4 1|5 1|6
oM, 8M. /(1+b) 6M 8M.,/(1+b)
Z* Z*

‘ analytically approximated Z* value
for which zero-speed wave exits



Comparison with archaeological data
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Early Epipaleolithic
Tor Hamar F (n = 4907)

EUP (Early Ahmarian)
Tor Hamar G (n = 4291)

IUP-EUP
Tor Fawaz (n = 1494)

IUP (Emiran)
Wadi Aghar (Kadowaki 2017)
(n = 317)

Late MP
Tor Faraj
(n =767)

Bladelets

new

old



40l
20+
o .

() 50 100 150
Space

Hubrin 2015

Two dispersals of modern humans
Archaeological records from Levant to Europe

kya
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First Dispersal (Initial Upper Paleolithic)
Emiran (Levant) Bohunician (Europe)

Belfer-Cohen and Goring-Morris Skrdla 2003 (Stranska skala)
2007



Second Dispersal (42ka)

Mellars 2011 (Nature, 479)



Protoaurignacian Early Ahmarian
(Europe) (Levant)

Bladelet
Bladelet

Bordes 2006

(Le Piage level K) Goring-Morris and Belfer Cohen 200&



Summary

A model of spatial dynamics of human population and culture
— Positive feedback loop between population density and culture

— Cognitive and demographic equivalence of Neanderthals and modern
humans

— They interact through ecological resource competition

High-density-high-culture equilibrium does not always spatially
spread even if it is locally stable

Raplacement of Neanderthals by modern humans is possible when
ecological niche overlap is high (M/Mn<b<1)

Range-expansion of modern human might have occurred in two
major waves with different speeds

— “First” wave : Ecological invasion due to different niche utilization
— “Second” wave : Driven by high-density-high-culture equilibrium

48



Thank you

Wakano JY, Gilpin W, Kadowaki S, Feldman MW, Aoki K (2018) Ecocultural range-expansion
scenarios for the replacement or assimilation of Neanderthals by modern humans
Theoretical Population Biology 119:3-14
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I "Traveling wave solutions for a three-species diffusive competition system"

Jong-Shenq Guo (Tamkang University, Taiwan)

We shall discuss the existence and stability of traveling waves for a three-species diffusive competition system.
This talk is based on some recent joint works with Karen Guo and Masahiko Shimojo.



Traveling wave solutions for a three-species
diffusive competition system

Jong-Sheng Guo (TKU)
Tamsui, New Taipei City, Taiwan

Joint work with K. Guo (PU) and M. Shimojo (TMU)

Jong-Shenq Guo (TKU) ICMMA2023, MIMS, 10/31-11/2/2023



Introduction

§1. Introduction

Consider the following diffusive 3-species competition system

Ut = Uggy + u(l —u — agv — agw), * € R, t > 0,
Vp = Ugg + 120(1 —byu —v — b3w), z € R, t > 0, (1)

W = Way +1T3w(l — cu — v —w), z € R, £ >0,

where u, v, w are the densities of three competing species.

@ rq, 79,73 the intrinsic growth rates, and as, as, b1, b3, c1, co
the interspecific competition coefficients are positive

@ the carrying capacity of each species is normalized to be 1

@ we assume the diffusivities of all species are equal to 1

Jong-Sheng Guo (TKU) ICMMA2023, MIMS, 10/31-11/2/2023
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@ Due to the normalization of the carrying capacities, that
az > 1(az < 1) means v is a strong (weak) competitor to w.

@ For example, {a2 > 1,b; > 1} means u, v are strong
competing species, etc.
@ When b3 < 1 and ¢» < 1, we have the semi-coexistence
state EY := (0, v¢, we):
1—bs

Ve = 1—5362

1—02

€(0,1), w. = € (0,1).

1-— b302

@ |tis also possible to have the co-existence state
Ey i= (U, vy, wi) With uy, vy, wy € (0,1).

Jong-Sheng Guo (TKU) ICMMA2023, MIMS, 10/31-11/2/2023
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Traveling wave solution

A traveling wave of (1) is a solution (u, v, w) of (1) in the form

(u,v,w)(x,t) = (¢17¢27¢3)(z)7 z:=uwx — st,

for some constant (the wave speed) s € R and some functions
(the wave profiles) {41, p2, P3}.
Problem: find unknown {s, ¢1, ¢2, ¢3} such that
A+ s +1r101(1 — ¢1 — aggo —azgz) =0, z € R,
5 + 5 + raga(l — biy — p2 — bspz) =0, z € R,
¢g + ng)g + T3¢3(1 — Cl(bl — 02(]52 — ¢3) =0, z€eR.

(@)

ICMMA2023, MIMS, 10/31-11/2/2023
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Introduction

@ Two asymptotic states:

(01, P2, ¢3)(£00) = Ex, )

where E. are two different constant states of (1).

@ The wave is called a monostable wave if one of {E } is
unstable and the other is stable

@ ltis bistable if both states E are stable

@ When s > 0, we call £_ the invading state and £ the
invaded state. Roles are exchanged if s < 0.

@ Difficulty: comparison principle does not hold for 3-species
competition systems.

Jong-Sheng Guo (TKU) ICMMA2023, MIMS, 10/31-11/2/2023
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Mimura’s works on 3-species competition systems

@ Chen, Hung, Mimura, Tohma, Ueyama, Exact travelling wave solutions of three-species

competition-diffusion systems, DCDS-B (2012)

@ Chen, Hung, Mimura, Tohma, Ueyama, Semi-exact equilibrium solutions for three-species

competition-diffusion systems, Hiroshima Math. J. (2013)
@ Mimura, Tohma, Dynamic coexistence in a three-species competition-diffusion system, Ecol. Compl. (2015)

o Contento, Mimura, Tohma, Two dimensional travelling waves arising from planar front interaction in a three

species competition diffusion system, JJIAM (2015)

@ Contento, Hilhorst, Mimura, Ecological invasion in competition-diffusion systems when the exotic species is

either very strong or very weak, J. Math. Biol. (2018)

o Chang, Chen, Hung, Mimura, Ogawa, Existence and stability of non-monotone travelling wave solutions for

the diffusive Lotka-Volterra system of three competing species, Nonlinearity (2020)




Introduction

In the work in 2020 (Nonlinearity) for general d;, they study
@ u,w are strong competitors: az > 1,01 > 1,b3 > 1,¢1 > 1
@ v is a very weak competitor: 0 < ag,co < 1
@ TWS with E_ = (1,0,0), E4 = (0,0,1): a bistable wave

by the bifurcation theory and the method of super-sub-solutions

@ See also Chang, Chen, JDDE (2023) for a related work.

@ The sign of wave speed is an open question?

Our aim: monostable waves?? easier!

Jong-Sheng Guo (TKU) ICMMA2023, MIMS, 10/31-11/2/2023
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§2-1. Main results: existence

@ Assume there are two aboriginal weak competing species
v and w in the sense b3 < 1 and ¢y < 1.

@ Let u be an alien species.

@ Assume that the semi-coexistence state E = (0, v, w.) is
unstable for the ODE system of (1):

B :=1—asv. — azw, > 0. (4)
@ Note that condition (4) can be achieved, e.g., when

az +az < 1. (5)

Jong-Sheng Guo (TKU) ICMMA2023, MIMS, 10/31-11/2/2023
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Letbs < 1 and cy < 1. Suppose, in addition to condition (4), that
71 > max{ra(by + bscave), m3[c1 + c2(1 — ve)]}- (6)

Set s, := 2+/r15. Then there is a positive solution (¢1, ¢2, ¢3) of
(2) satisfying

(¢17 ¢27 d)3)(+00) = Eg = (O>U0a wC)

forany s > s,.

Jong-Sheng Guo (TKU) ICMMA2023, MIMS, 10/31-11/2/2023
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@ Assume w is an aboriginal weak competitor.

@ Let oy :=max{0,0} for o € R.

Letas < 1 andbs < 1. Assume
7“2(1—()3) :7“1(1—&3) 27“3(01—1—02—1)+. (7)

Set s* := 2./r1(1 — a3). Then there exists a positive solution
(¢1, b2, 43) of (2) satistying

(91, P2, ¢3)(4+00) = Ey = (0,0,1)

for any s > s*.

Jong-Sheng Guo (TKU) ICMMA2023, MIMS, 10/31-11/2/2023 10/29
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A strong alien competitor « is introduced to the habitat of two
aboriginal competing species v and w:

Let {s, (¢1, P2, ¢3)} be a traveling wave obtained in Theorem 1
with s > s, or Theorem 2 with s > s*. Then
(¢1, P2, ¢3)(—0) = E, = (1,0,0), if we assume

asb1 > 1, asc1 > 1, as +ag < 1. (8)

v

@ Theorem 3 shows that system (1) has traveling waves of
mixed front-pulse type connecting E,, and E,, for any
s > s*, under conditions in Theorem 2 and (8).

Jong-Sheng Guo (TKU) ICMMA2023, MIMS, 10/31-11/2/2023 11/29
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e Three species are all weak competitors:
Under the assumption
as+az <1, by +b3<1, c14+co <1, (9)

the co-existence state E, = (u., vs, wy) exists and E, is stable.

Theorem 4

Let {s, (¢1, P2, ¢3)} be a traveling wave obtained in either
Theorem 1 with s > s, or Theorem 2 with s > s*. Then
(b1, P2, P3)(—00) = (ux, v4, wy), if condition (9) is enforced.

Jong-Sheng Guo (TKU) ICMMA2023, MIMS, 10/31-11/2/2023 12/29
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§2-2. Proofs for existence

@ The main idea of the proofs of Theorems 1 and 2 is to
construct suitable (generalized) upper-lower solutions
to capture the unstable tails £* and E,, at oo, resp.

@ For the derivation of the stable tail limit at z = —oco, we
apply the classical method of contracting rectangles
(cf. e.g., Huang-Lin (JMAA14), Lin-Ruan (JDDE14),
Chen-G.-Yao (JMAA17), G.-Nakamura-Ogiwara-Wu
(NA-RWA20), Chen-Giletti-G. (JDE21)).

@ Existence can allow non-equal diffusivities.

Jong-Sheng Guo (TKU) ICMMA2023, MIMS, 10/31-11/2/2023
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Definition 5

A pair of continuous functions (¢, 5, ¢3) and (¢, ¢, ¢.) is
called a pair of upper-lower solutions of (2), if

b (2), 9!(2), Bi(2), ¢(2), i =1,2,3, exist such that

1

Uy (2) = 31 (2) + 561(2) + 61 (2)g1 (81, 0, 0,)(2) <0,
Un(2) = Gy (2) + 565(2) + By(2)g2(9,, b2, B5)(2) < 0,
Us(2) = By (2) + 5s(2) + B3(2)g3(d,, By, 63)(2) <0,
L1(2) = ¢/(2) + 58, (2) + &, (2)g1(8,, B2, 63)(2) > 0,
Lo(2) = ¢)(2) + 58}(2) + 8, (2)g2(B1, 8, 63)(2) = 0,
L3(2) = ¢(2) + 5¢,(2) + 0y(2)g3(1, b2, 0,)(2) > 0

hold for z € R except for a finite subset E of R.

Jong-Sheng Guo (TKU) ICMMA2023, MIMS, 10/31-11/2/2023 14/29
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Proposition 1

Given s > 0. Suppose that (2) has a pair of upper-lower

solutions (¢1, ¢, 3) and (¢, ¢, ¢,) such that ¢. < ¢; and

hm (bz( ) < lim 5;(,2), lim ¢(2) < hm #.(2), Vz € E,

z—zt zZ—rz zZ—F2= z—zt

fori =1,2,3. Then (2) has a solution (¢1, ¢2, ¢3) such that
?’i < ¢Z Safu = 1,2,3.

@ A pair of upper-lower solutions serves as the upper and
lower bounds for the domain of the integral operator
corresponding to differential system (2) so that Schauder’s
fixed point theorem can be applied to obtain a solution of
(2) in this domain (an idea of Ma (JDEO01)).

Jong-Sheng Guo (TKU) ICMMA2023, MIMS, 10/31-11/2/2023 15/29
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The construction of upper-lower solutions relies on the
linearization of the equation of alien species in (2) at the
unstable state, e.g., £, = E:

)\? +sN+rf=0,=1,2 <A <0 & eMF | zeM?
so that for s > s,:

¢y (2) = min{1,eM*}, ¢, (2) :== max{0, eM? — pel*Y,
52(2) = min{L v + (1 00N}, () = max(0,v(1 - M),

¢3(z) = min{l,w, + 027)66)\1’2}7 @3(2) = max{0, we(1 — e)qZ)}’

where p and p are suitably chosen constants.

Jong-Sheng Guo (TKU) ICMMA2023, MIMS, 10/31-11/2/2023 16/29
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To derive the stable tail limit at z = —oo, we first let

¢; = liminf ¢;(2), qu' = limsup ¢;(2), i = 1,2, 3.

Z—=— Z——00

Since ¢; > 0, i = 1, 2,3, by the maximum principle we have
0<¢;<1,i=1,2,3. Hence

0<¢; <of <1,i=1,2,3.
Then we have
¢f271::1—a2—a3>0, (10)

provided as + ag < 1.

Jong-Sheng Guo (TKU) ICMMA2023, MIMS, 10/31-11/2/2023 17/29
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We only give a proof of Theorem 3.

For this, we define m1(0) := (1 — 0)y1/2+ 6, 6 € [0, 1].
Since v1 < 1, m1(0) is increasing in 6 € [0, 1] such that
my(1) = 1. Let

A:={0€[0,1)] ¢ >mi(8)}.

By (10), 0 € A and so the quantity 6, := sup A is well-defined
such that 6y € (0,1]. Then ¢; > m;(6p) and

5 < max{0,1—bymi(0)}, ¢3 < max{0,1 — cym(6p)}.

Finally, a contradiction argument leads to ¢y = 1. O

Jong-Sheng Guo (TKU) ICMMA2023, MIMS, 10/31-11/2/2023 18/29



Stability

§3-1. Main results: stability

Given positive constants {o; }, define a distance function (to ®)

3
KUT:=Y " oikilU],  KilUi) := Ui — ¢ — ¢ ln[j, (11)
i=1 ¢

for any positive function U = (Uy, Uz, Us) defined on R.

Note that £[U](z) > 0 for all z € R and K[U](z) = 0 if and only if
U(z) = ®(z) for some z € R.

For a positive constant R, we let

s /524
StTVs R,SZQ\/E.

A= A(s;R) := 5

(12)

Jong-Sheng Guo (TKU) ICMMA2023, MIMS, 10/31-11/2/2023 19/29
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Suppose that there exists a set of positive constants
{0'1, 09, 0'3} such that

I —Zal u; —v;) {gi(w) — gi(v)} <0 (13)

for all u = (u1,uz,u3),v = (v1,ve,v3) € Z := [0, 1], where
g1(u1,uz,u3) := r1(1 — ur — aguz — agus),
go(u1,ug,uz) := 12(1 — bruy — ug — bzug),
g3(u1,uz,u3) := r3(1 — crug — cauz — ug).

Using the moving coordinate z = = — st, (1) is written as

(Ui)t = (Ui)zz + S(ui)z + uigi(u)v VS Rv t>0,1i= 172)3- (14)

Jong-Sheng Guo (TKU) ICMMA2023, MIMS, 10/31-11/2/2023 20/29
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Theorem 6 (3 weak competitors)

Assume, in addition to (9), that either asbscy = asbico Or
ag+bitaz+c1 <2, a9+b1+b3s+co<2,a3+c+b3+cy <2

Let ® be a positive traveling wave of (1) connecting

E; €{(0,0,1),(0,v.,w.)} and E_ = E, with wave speed

s > 2v/R, where R := max{ry,r2,3}. Then {s, ®} is stable in
the sense that u(z,t) — ®(z) ast — oo locally uniformly for

z € R for any solution v of (14) with initial data ug att = 0
satisfying e **K[uo] € L*(R), where A\ = \(s; R) is defined in
(12) and the positive constants {o1, 02,03} in (11) are chosen
so that (13) holds.

Jong-Sheng Guo (TKU) ICMMA2023, MIMS, 10/31-11/2/2023 21/29
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Theorem 7 (2 weak vs 1 strong competitors)

Assume, in addition to
ag+az <1, bg,ca <1, by >1/as, c1 > 1/as, (15)
that
ashy = 1 = agzcy, 2asa3 = a3bs + aicy. (16)

Let ® be a positive traveling wave of (1) connecting

E; €{(0,0,1),(0,v.,we)} and E_ = E,, with wave speed

s > 2v/R, where R := max{ry,r2,73}. Then {s, ®} is stable in
the sense described in Theorem 6.

Jong-Sheng Guo (TKU) ICMMA2023, MIMS, 10/31-11/2/2023 22/29
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@ At the stable tail of traveling wave, i.e., z = —o0o, the
perturbation is allowed to be arbitrarily large due to
condition e=**K[ug] € L'(R). Note that A < 0.

@ However, at the unstable tail (z = o), the perturbation can
only be made with decay rate faster than e*=.
Note that the exponent X is a function of the wave speed s.

@ This is a typical phenomenon in the stability of monostable
waves in many reaction-diffusion systems, including their
discrete analogues.

@ Note that R > r1(1 — a3) and R > r1 3. The stability of
wave with speed s < 2v/R is still left open.

Jong-Sheng Guo (TKU) ICMMA2023, MIMS, 10/31-11/2/2023 23/29
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§3-2. Proofs for stability

Let ¥(z,t) :== Ku(-,1)](2), z € R, t > 0. Since

max sup{g;(®(z))} < max{ri,ry,rs} := R,
1<i<3 2eR

we can check that ¥ satisfies

U, <VU,,+sVU,+RVU, zeR, t>0, (17)

if (13) holds for some {1, 02,03}.

From (17) and e~ **K[ug] € L' (R), by comparison, Theorems 6
and 7 are proved. O
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Check the condition (13): 7 >0

Let u := (uy,u2,us), v := (v1,ve,v3) and
X :=uy —v1, Y i=uy— v, Z:=uz— 3.
Then I is computed as

I = O‘17’1X2 + O’QT‘QYQ + O‘31"3Z2 + (0‘17‘1&2 + 027‘2b1)XY
—i—(UQTng =+ Jg’l“gCQ)YZ + (01’/“1&3 + 03?”301)XZ.
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Three weak competitors

Case 1. a2b301 = agblcgi choose

1 a9 as
01 =—, 02 = , 03 = )
1 roby r3C1

then we can write

I = (1—a2—a3)X2+%(1—b1—b3)Y2+?(1—cl—02)22
1 1
2 o | G2b3 2
+ar(X +Y)* +a3(X + 2) +b—(Y+Z).
1

Jong-Sheng Guo (TKU) ICMMA2023, MIMS, 10/31-11/2/2023 26/29
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Case 2. condition
as+bi+asz+ci <2, ag+bi+bz+co <2, az+ci+bg+ca < 2. (18)
Choosing o; = 1/r;, i = 1,2, 3, we obtain that

I = X24Y%24 22+ (ag +b)XY + (a3 4+ 1) X Z + (b3 + )Y Z,

1 (ag+01)/2 (az+c1)/2| [ X
= [X7YaZ] (a2+b1)/2 1 (b3+62)/2 Y
(a3+01)/2 (bg+62)/2 1 7

Then I > 0 under condition (18), by Gerschgorin’s Theorem.

Jong-Sheng Guo (TKU) ICMMA2023, MIMS, 10/31-11/2/2023 27/29
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Two weak and one strong competitors

Choosing

1 a9 as
g1 = N 02 = 7 g3 )
1 by c1r3

from (16) and (15), we can write
1 a9 as X

I=[X,Y,Z] laz a3 aga3z| |Y
az asas a% A4

Since B has the eigenvalues {0,0,1 + a3 + a3} and so B is
symmetric positive semi-definite, we obtain I > 0.
In fact, we have I = (X +a2Y +a3Z)%. Q: any other conditions?
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Thank you for your listening!
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"Stability of single transition layer solutions in mass-conserving

reaction-diffusion systems with bistable nonlinearity"

Hideo Ikeda (University of Toyama, Japan)

Mass-conserving reaction-diffusion systems with bistable nonlinearity are considered under general assumptions,
which are useful models for studying cell polarity formation, whose process is key in cell division and differentiation.
The existence of stationary solutions with a single internal transition layer is shown by using the analytical singular
perturbation theory. Moreover, a stability criterion for the stationary solutions is provided by calculating the Evans
function. This is a joint work with Masataka Kuwamura of Kobe University.
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Stability of single transition layer solutions
In mass—conserving reaction—diffusion systems
with bistable nonlinearity

University of Toyama
Department of Mathematics
Hideo lkeda

Jointly with
Masataka Kuwamura
Kobe University

ICMMA2023
Reaction-diffusion systems: from the past to the future
dedicated to the memory of Prof. Masayasu Mimura.
October 31 — November 2, 2023, on the Nakano
Campus of Meiji University, Tokyo.



In Memoriam of Professor Mayan Mimura from my youth

* First Encounter

A camp-style C&A summer seminar in 1978. This seminar was a
study group where participants related to computation and
analysis from companies and universities gathered for three
days and two nights, eating and sleeping together.

(2A3BDEBEIF—)

My first impression of Mayan

He was serious and strict during the daytime seminar.

However, at night, he was very friendly and had a sense of humor.
| liked him at night.

This is a scene from that night.

Night scene in a Japanese-style room



= Opportunity to start the analytical singular perturbation method (1980)

He introduced the analytical singular perturbation method to Japan as a souvenir when he
came back from Oxford University. | was very interested in the method of constructing an
approximate solution for each domain and then successfully combining them at the end.
The content was an introduction of a paper by P.C. Fife

*Mayan’s Intensive Lecture for Undergraduate Students at my university (1982)
The subject matter was something | had never heard before in a mathematics class.
The title was "A Model of Pulse Propagation on Neuronal Axons (Hodgkin-Huxley Equation).
------ Differential equations that won the Nobel Prize in Physiology and Medicine in 1963

| wondered for a moment if this was really mathematics. | thought for a moment,

but as | listened, differential equations naturally came to my face. At that time, | felt
freshness and interest in this kind of mathematics.

*Start of joint research with Mayan and T. Tsujikawa (1983)



Hodgkin-Huxley Equation

f Qv = %—EKRA'(U—VK)
—Gnam>h(v — Vivg) — Ge(v — Vi)
) I =y (v) (moo(v) —m) >0, zeR
I = () (noo(v) —n)
| 2 = () (hoo(v) — h)

Calculated by NEC PC-9801 (MS-DOS) + BASIC



H. Ikeda, M. Mimura, T. Tsujikawa, Slow traveling wave solutions to the Hodgkin—Huxley equations.
Recent topics in nonlinear PDE, Il (Tokyo, 1986), 1-73, North—Holland Math. Stud., 148, Lecture

Notes Numer. Appl. Anal., 9, North—Holland, Amsterdam, 1987.

H. Ikeda, M. Mimura, T. Tsujikawa, Singular perturbation approach to traveling wave solutions of
the Hodgkin—Huxley equations and its application to stability problems. Japan J. Appl. Math. 6
(1989), no.1, 1-66.

T. Tsujikawa, T. Nagai, M. Mimura, R. Kobayashi, H. lkeda, Stability properties of traveling pulse
solutions of the higher—dimensional FitzHugh—Nagumo equations. Japan J. Appl. Math. 6 (1989),

no.3, 341-366.



*One year research life at Hiroshima University as an in-country student in 1986
---- with support from the Ministry of Education (MEXT)

At that time, Mayan’s wife was returning to her parents' home for childbirth. Therefore, Mayan had no
choice but to go home early, so he stayed with me one-on-one until nighttime. However, we did not
talk about research all the time. He was absorbed in thinking of problems that he thought would be
interesting to solve. He would often say to me, “How about this problem? But you are the one who
will solve this problem”.

Thanks to him, | was able to write the following five papers.

H. Ikeda, On the asymptotic solutions for a weakly coupled elliptic boundary value problem with a small
parameter. Hiroshima Math. J. 16 (1986), no. 2, 227-250.

H. Ikeda, M. Mimura, Y. Nishiura, Global bifurcation phenomena of travelling wave solutions for some
bistable reaction—diffusion systems. Nonlinear Anal. 13 (1989), no.5, 507-526.

H. Ikeda, M. Mimura, Wave—blocking phenomena in bistable reaction—diffusion systems.
SIAM J. Appl. Math. 49 (1989), no.2, 515-538.

Y. Nishiura, M. Mimura, H. Ikeda, H. Fujii, Singular limit analysis of stability of traveling wave solutions in
bistable reaction—diffusion systems. SIAM J. Math. Anal. 21 (1990), no.1, 85-122.

H. Ikeda, M. Mimura, Stability analysis of stationary solutions of bistable reaction—variable diffusion
systems. SIAM J. Math. Anal. 22 (1991), no. 6, 1651-1678.



BBQ + wine party on the roof of Mayan's apartment



Thanks to these, | received a Doctor of Science degree from Hiroshima University in 1989

“Deep acknowledgment to Mayan

| would like to take this opportunity to express my sincere gratitude to Mayan for giving
me a start in my research life and for his words of encouragement every time we met.



Reaction-diffusion systems are useful models for understanding the mechanism of
appearance of non-uniform patterns in various fields.

Ut = €2u:ca: + f(u, 'U)u
(1) Ut =DU$$_f(Ua'U):
(uz,vz)(t,0) = (0,0) = (uz,vz)(t, 1), 0 <t < oo,

where  and D are positive constants satisfying 0 < = < D.

(t,z) € (0,00) x (0,1)

We note that (1) is a mass-conserving reaction-diffusion system because

1 1
(2) £ ::‘/0 {u(z,0) +v(x,0)} dx :/O {u(z,t) +v(zx,t)} dx

holds for any (smooth) solutions.



Y. Mori, A. Jilkine and L. Edelstein-Keshet, Wave-pinning and cell polarity from a bistable reaction-
diffusion system, Biophys. J. 94 (2008) 3684—3697.

du d“u

{Elﬂ.::l E = Du@ + f[:T.LI ‘Uj,
v d%v

{th} E = DHE — f[u 'U:],

where f(u,v) is the rate of interconversion of v to u, and the rates of diffusion satisfy
D, <= 1), reflecting the fact that the membrane bound species u diffuses much more
slowly than the cytosolic species v. The boundary conditions are

o v
(2.1c) a—a—ﬂ, r=10L.

It is clear that system (2.1) leads to mass conservation, 1.e., that

(2.2) f{u + v)dr = Kigial = constant.
LY

.
f(u, v) = (activation rate) - v — (Inactivation rate) -u =g (5 + L) v — T,

10



The model is based on a caricature of Rho proteins:
(1) The protein has an active (GTP-bound) form (u) and an inactive (GDP-bound) form (v).

(2) The active forms are found only on the cell membrane; those in the fluid interior of the cell (cytosol)
are inactive.

(3) There is a 100-fold difference between rates of diffusion of cytosolic vs. membrane bound proteins.

Fic. 2.1. {(a) Our 1) model represents a strip across a cell diameter (L =~ 10pm), shoun top-
doum and side view. (b) Side view of a cell {top) showing membrane (shaded) and cytosol [white)
and a cell fragment (bottom) == 0.1pm thick; see [40]). Active (u(r,t), black dots) and inactive
(v({x,t), white dots) proteins redisiribute along this aris during polarization. (c) Enlarged rectangle
from (b) showing erchange between membrane and cytesol (u +r v), unegual mates of diffusion,

inactivation by GAPs, and activation by GEFs with positive feedback (+ arrow) (schematic not
draum to scale).

11



Y. Mori, A. Jilkine, L. Edelstein-Keshet, Asymptotic and bifurcation analysis of wave-pinning in a
reaction-diffusion model for cell polarization, SIAM J. Appl. Math 71 (2011), 1401-1427.

K (@) o
11‘21} 2e : T T T
2.13 u, v = — .
( ) f(u;v) 1+u?
(2.14) flu,v) =u(l —u)(u—-1-—v),
e=0.05 £ =0.05
2.5r
: - =2
00 | 1.0 i 20
1o n(w) H(w)
i DiE l:lid- - [+1:] il ] 1 4] E'I_'Z 0.4 l:liE E'I.B 1

X

(a) (b)

Fiz. 2.2. Wawve-pinning behavior for the RD model (2.6) with ¢ = 0.05, D = 1. (a) Hill function
reaction kinetics (213) with §=0,v =1, m =1, K = 2.8, (b) Cubic reaction kinetics (2.14) and
K = 1.9. Solutions to u (solid) and v (dashed) are shown at the indicated times. The wove is
initiated as the square pulse inu at ¢t = 0.

The wave-pinning is a phenomenon that a wave of activation of the species is initiated
at one end of the domain, moves into the domain, decelerates, and eventually stops
inside the domain, forming a stationary front (cell polarization).

12



Y. Mori, A. Jilkine, L. Edelstein-Keshet, Asymptotic and bifurcation analysis of wave-pinning in a
reaction-diffusion model for cell polarization, SIAM J. Appl. Math 71 (2011), 1401-1427.

They claimed in this paper that the system (1) has a stable stationary solution
with a single internal transition layer under certain conditions by using a formal
asymptotic analysis, numerical computations and a perturbative argument against
the background of cell biology.

The aim of my talk is to show rigorusly that the system (1) has a stable stationary
solution with a single internal transition layer under more general nonlinearity f.

13



Assumption.

(Al) The ODE uw = f(u,v) is bistable in u for each fixed v € I = (v,v). That is,
f(u,v) = 0 has exactly three roots h~(v) < h%(v) < hT(v) for each v € I satisfying

fu(h=(),0) <0 and  fu(hP(v),v) > 0.
(A2) The function (D) K@)

h+ " 22 T T
J(v) = fh_(i))f(u,v)du (vel)
has an isolated zero at v = v* € I such that
ht (v
I (v*) = /h_(v*) Folu, v*)du # 0.
(A3) .
Fu(hE(@),0) < fo(hF=(v),0)  (veD). T o Y

(A4) The conserved mass ¢ satisfies the following inequality:

h(v*) + 0" < € < hH (") + v*.

14



Existence of single transition layer solutions

2ugy + flu,v) =0,
(3) Dvgy — f(u,v) = 0,
(uz,v2)(0) = (0,0) = (ug,va)(1)

x € (0,1)

satisfying

1
@ &= | {u@) +v@)}de

for a given constant £ in (A4).

= 2y 4 Dv = C(e)

Substituting v = (C(e) — £2u)/D, we have a single equation for «

U
Pugs 4 f(u,(C(e) = 20)/D) =0, € (0,1) (
uz(0) = 0 = uu(1), ’

and :

_C(e) g2\ 1 xa

By using the singular perturbation technique, we can obtain u(x;¢), C(e)and z*(¢)
satisfying u(z*(e);¢) = .

15



Stability analysis of the single transition layer solutions
When we apply the SLEP method =

IHE
fi =X

Djaa + W — fap — Mp=o0(1) as e— 0 for ¢ € H2[0,1] N H[0,1].

futs
fi—A

{ v — fop —Mp,p) -+ 0 as e — 0 for a crirtcal A=o0(1) (||¢]l;2=1).

The Lax-Milgram theorem cannot be applied to the solvability of the SLEP equation.
This shortcoming seems to be common to singular perturbation problems for mass-
conserving reaction-diffusion systems such as (1).

16



In this talk, we consider the full system (3).

2 Upy + fu,v) =0,
(3) Duvgy — f(u,v) = 0,
(uz,vz)(0) = (0,0) = (uz, vz )(1)

r € (0,1)

satisfying

1
@ &= [ {u(@) +v(@)}de

for a given constant £ in (A4).

This is a reason why it is convenient to show stability property
——————— to calculate the Evans function .

17



Divide [0, 1] into two subintervals [0, z*(g)] and [z*(¢), 1], and consider the following
two boundary value problems:

52u$$ + f(u,v) =0, *
(5) Duvas — f(u,v) = 0. z € (0,2%(¢))
(uz,v2)(0) = (0,0), (u,v)(z*(e)) = («,B(¢))
and
gy + flu,v) =0, .
(6) Dvgs — f(u,v) =0, r € (z%(e), 1)
(’LL,’U)(JJ*(E)) = ((-Vv;B(E))a (U:E,Um)(l) = (030):
where o is an arbitrary fixed constant satisfying h=(v*) < a < ht(v*) and B(e) is
determined by v(xz*(e)) = B(e). First, we suppose that

2*(g) = zg + ex1

and i Ulx;e)
B(e) = Bo + &b
are arbitrarily given. o
B(@rerrrmsrsremmsrsemurfpmranann VG, eeeeemeeseman
0 jx*{a}
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By using the singuler perturbation method, we can construct solutions (u™, vt)(z; )
of (5) and (6), respectively, which have uniformly O(g)-approximations.

Next, we match both solutions (u®,v=)(z:¢) in Cl—sense at z = z*(¢), and use the
1
constrained condition & =f0 {u(z;e) +v(x;e)} de,
from which z*(e) = zg + cx1(e) and B(e) = Bg + 81 () are determined uniquely.
( zo= (v +hT (") = &/(NT(v*) —h~(v*)), Bo=1v* )
Remark =2u 4+ Dv = C(e).

= Theorem 1 (Existence). There exists a solution (u,v)(x;¢) satisfying

2uzpe + fu,v) =0,
(3) Dvgy — f(u,v) =0,
(uz,v2)(0) = (0,0) = (uz,vz)(1)

x e (0,1)

and

1
(4) 5:/0 {u(z;e) +v(z;e)} da.

19



Stability analysis of the single transition layer solutions

We consider the linearized eigenvalue problem of (1)

d2
2 £ £
€ +f f
(7) re p = dr2 u 2” p | _ 2 p ’
q . D d c q q
T P
under the Neumann boundary condition, where & := fu(u(x;e),v(z;e)), [5 = fo(u(zx;e),v(x;))

and XA € C. The underlying space for (7) can be taken as BC|[0, 1] x BC[0, 1] with

. . -1
D(£%) = {(p.a) € C2[0,1) x C2[0,1] | | (p+ q)da =0}

by virtue of (2). We note that for (p.q) € C?[0,1] x C?[0,1] satisfying (7), the
condition

1
A/O(p+q)da:=o

always holds by integrating the equations with respect to p and ¢ in (7) on the interval
[0, 1] under the Neumann boundary conditions. This fact implies that (p,q) € D(L?)
if (p,q) € C?[0,1] x C?[0, 1] satisfies (7) for A # 0.

¢2[0,1] = {ue C2[0,1] | ux(0) =0, us(1) =0}

20



The equation (7) can be rewritten equivalently as

d — _
—V =A(z;¢; )V, z€(0,1)
dx

(pz,6z)(0) = (0,0), (pa,px)(1) = (0,0)
for V.= V(x;e; \) := (p,epa, q,qz) (z;2; )), where A(z;e; \) is defined by

(8)

0 1/e 0 0
fa/D 0 (A+f3)/D O

21



Similarly to the construction of the single transition layer solution, we can solve the
following problems with suitable boundary conditions:
2 € €y —
epza + fup + foa = Ap,
%) SRR z € (0,2%(e))
Dagze — fop — foqa = Aq,
(P2, q:)(0) = (0,0), (p,q)(z"(e)) = (a,b).
and
2 g £, —
€ + fap + = Ap,
. Paz + fap + foq = Ap v € (2%(e). 1)
(10) Dqzz — fip — f5q = A,
(p,q)(x*(e)) = (a,b), (pz,q2)(1) = (0,0),
where a,b are given real numbers. For any A € C, let (p7,q9 )(z;e;\;a,b) and
(pt,qT)(z;¢; \; a,b) be solutions of (9) and (10), respectively.

22



Then, any solution V(z;e; \) of (8) on [0,z*(¢)] is represented as a linear combination

of two independent solutions

p (z;e; A 1,0) p (z;e;X;0,1)

epr (e A1,0) | 5y ._ | epz(zie; A0, 1)

qg (xz;e;X;1,0) |’ Va(zi i A) -= q (x;e;X;0,1)

q; (z; 2, X, 1,0) q; (z; ;X\, 0,1)

Similarly, any solution of (8) on [z*(e),1] is represented as a linear combination of

two independent solutions

[ pT(z;6;2;1,0) ] [ pT(x;e;2,0,1)
spi(m;s; A;1,0) sp;;"(x;s; A 0,1)
gt (z;e;1,1,0) gt (z;e;0;0,1)

g (ze, 7 1,0) | g (ze;0,0,1)

Since the coefficient matrix A(x;e; A) of (8) depends analytically on A, we can con-

sider, without loss of generality, that V;(x;e; \) (i = 1,2,3,4) also depend analytically

on A

Vi(z;e;\) =

Va(z;e; \) = , Va(z;e; ) i =

23



Let V(z;e;\) be a nontrivial solutions of (8) for some A € C. Then, there exist
constants «; (+ = 1,2,3,4) satisfying Zf’zl\aé\ # 0 such that V(z;e;)\) must be
represented as

a1Vi(x; e, A) + asVa(x; e; ), x € [0,2*(e)]

azVa(z;e; N) + aaVa(azie; N), = € [2*(e), 1],

which implies that the relation

Vix,e;\) = {

a1Vi(a*(e);e; A) + aaVo(z*(e);6; X)) = a3zVa(a*(e);e; A) + agVa(a*(e);e; N).

holds at = = z*(¢); four vectors V;(z*(g);e;\) (i = 1,2,3,4) are linearly dependent.
Defining

g(e; N) i=det[Vi(a*(e); e, A), Vala*(e);e; M), Va(a*(e); e \), Va(z*(e); &; M,

we find that g(e; A) is an analytic function of A € C and have the next lemma:

Lemma 1 Let A% 0. Then, A € C is an eigenvalue of (7) if and only if g(e; \) = 0.
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We call g(g; \) the Evans function of the single transition layer solution, which enables
us to investigate the distribution of eigenvalues of (7) in C.

To calculate the Evans function, we have to construct functions Vi(z:e;\) (i =
1,2,3,4) as we constructed a transition layer solution in the previous section. Ac-

cording to the dependency of A € C on ¢, we must divide our argument into the
following three cases:

(I) A=Xe)=0() in C as e — 0.

For the other two cases, we have A(e)/e — o0 as ¢ — 0. We find that there exists a

positive and continuous real function w(e) — oo as € — 0 such that A(¢) is represented
as

Ae) = ew(e)N(e),

where \(e) satisfies A\(0) £ 0. Then, we consider two cases according to the magni-
tude of sw(e) as follows:

(II) ew(e) - 0 and w(e) — 00 as € — 0;

(ITI) ew(e) — wp as € — 0 for some positive constant wy.

25



Case(l) A=XA(E)=0(¢)ase—0

§(O;ﬁ*) — _i* {&*/_OOOO(W(Z))QdZ/[; (fuff'v)dx
ht(v*) )

+ (hT (") —h™ () fo(u, v*)dvl /{D(W(0))?},

h=(v*)
where W (z) is a solution of
W(z) + f(W(2),v*) =0, z € R,
W(+eo) = ht(v*), W(0) = a;

Therefore, we find two solutions of g(0;x*) = 0 such that (i) ¥* =0 or

ht(v*)
(W) = b~ () / | Folu 0")du
(i) &' =-— # 0.

/'_DO(W(Z))%/O (f“fuf“) 2
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1
For the case (I) k* = 0, /0 {p(z;e) +q(z;e)}de =0 = «; =0 (i« = 1,2,3,4), which
implies that (p,q)(z;¢) = (0,0).

Thus, we obtain the following result:
Theorem 2(Case (I)) Assume that (A1)-(A4), and A = AX(e) = 0(e) as e —+ 0. The
eigenvalue problem (7) has only one eigenvalue

ht(v*)

(W) =@ [ 1 ol o)

f_o;(W(z))defo (f“fuf“)

and the sign of the real part of A(¢) is determined by
ht (%)

Ae) = et+o(e)eC

sign{Re(A(e))} = sign{—/ﬁ Jo(u,v )du} = sign{—J'(v*)}.

27



Case (Il) and Case (lll)

g(e:ew(e)X(e)) # 0 for small ¢ > 0.

Theorem 3(Stability) Under the assumptions (Al)-(A4), for any fixed d > 0 the
eigenvalue problem (7) has only one eigenvalue

At (v*)
(KT (v*) = h™ (v%)) oy o)
AE) = ———— s © -+ oe)
/_M(W(z))zdz /: (ﬁ”’f—*‘ﬁ”) dx

in C; and the sign of the real part of A(¢) is determined by

At (o
sign{Re(A(g))} = sign {—jh “0

AT (G v*)du} = sign{~7'(v")}.

Then, the single transition layer solution (u,v)(z;¢) is stable when J'(v*) > 0, con-
versely it is unstable when J/(v*) < 0.



- Extension this method to reaction-diffusion system including a nonlocal terms.

The singular perturbation method is not good at dealing with nonlocal terms

because it is a method of constructing approximate solutions for each subdomain and
then successfully laminating them together at the end, but the method introduced here
can be extended to problems involving nonlocal terms.



Thanks for your kind attention
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"Traveling wave solutions of combustion in a narrow channel"

Hirofumi Izuhara (Miyazaki University, Japan)

It is reported that combustion in a narrow channel shows a variety of char patterns depending on the airflow rate. In
this talk, we consider a mathematical model which describes the combustion experiment, and numerically study the
existence of traveling wave solution in one space dimension. In addition, we investigate the instability of its planar
combustion wave which is the onset of the variety of char patterns.
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RESEARCH MOTIVE

Paper density is uniform, ignition is uniform and supply of oxygen is
uniform.

Spreading of combustion is complicated even in a simple environment.

Can we understand the pattern forming mechanism?

Model aided understanding of combustion pattern formation




MATHEMATICAL MODEL

Fasano, Mimura and Primicerio proposed the following mathematical
model:

u; = LeAu + ¢pAPeu, + Byk(w)vw — a(u — 1)
¢v, = Av + pPev, — yk(u)vw t>0,(x,y) €Q

w; = —H,yk(uw)vw

u : temperature, v : oxygen concentration, w : paper density

k(u) : Arrhenius law u* /’@;erature
k() = {exp(—@/u) u=u"

0 u<u*

u

Fasano, Mimura & Primicerio "09
Lu & Dong '11
Ijioma, Izuhara, Mimura & Ogawa’'l5
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SETTING FOR SIMULATION

Parameter values: = {(x, 3’)|O <x <L, 0<y< Ly}

Lx = 300 Supply of 0Xygen y ... conditions:
Ly =100 g -
_ Ly u(0,x,y) =1
Le = 0.125
b =1 No paperregion  v(0,x,¥) = v,
A=0
B _: 10 Boundary conditions:
Y B 140 v(t,Lx,y) = v,
a=028 The others are Neumann B.C.
u=0.02 X Paper region
9 =
w(0,x,y) =w
U = 0.08 ( ) 0
H, = 0.5 N
v = 0.1 Ignition:

u(0,x,y) =u*+ (x,y)
No paper region

0 y L, @

0



NUMERICAL SIMULATIONS

£=0.000000

£=0.000000

0.0

0.0

Pe=3

Pe=0.3

1.0

0.0

1.0

0.0

[jioma, Izuhara & Mimura "17

1.0

_ 0.0
t=0.000000
u
1.0
_ 0.0
t=0.000000

v

0.1

Pe=0.17

w

1.0

0.0

1.0




QUESTIONS

Why do such complicated behaviors appear?

Fingering with
tip-splitting

W

Smooth front Connected front

w .[w

1.0

1)) /| 00

0-0) A LM ﬂ,(!

high supply velocity

Question:

Fingering without

tip-splitting

w

Can we capture the connected front as an instability

of the planar wave?

1.0

0.0

low



STABILITY ANALYSIS OF PLANAR WAVE

::Traveling wave solution || ¢ |
Introduce a moving coordinate z = x — ct: | (u*, v*, w*, c) H
Le(uy, + uyy) + cu, + pyk(uw)vw —a(u — i) =0
Vyz + 0,y + (cp + pPe) v, — yk(w)vw = 0
cw, — H,vk(w)vw = 0

b

Linearize the system around (u*, v*,w*):

Lea + caa; + Byk'(u*)v'w* —a Byk(u*)w* Byk(u*)v*
L:= —vk'(u*)vw* A+ (cp + que);—Z —yvk(u*)w* —vk(u*)v*
—H, vk'(u)v'w* —H, vk(u")w* C% — H,yk(u*)v*

U U
‘ Solve the eigenvalue problem £ ( V) =1 ( 1% )

74 w @



U U
Eigenfunction of £ ( /4 ) =1 < |4 ) is

Periodic B.C.

/

Ty “ -
U(z,y) . (U -
Vizy) |=e 22| 7 (2) | (n=123). ) L[| VR
W(zy) W (2) Y Propagation
(Taniguchi & Nishiura 94, direction
Ikeda, Nagayama & Ikeda. '04) —
X
Therefore,
(2)-+(2)
solve the eigenvalue problem L| V |=A( V |,
w w
where
Le {di;z—(mT”)z} +c + Byk'WHv'w* —a Byk@w )w* Byku*)v*
L= —yk'(u)vw* :—ZZZ — (Z“T”)Z + (cop + que)% — vk(u* )w* —yk(u*)v*
—H,yk'(u*)v*w* —H, yk(u*)w* c% — H,yk(u*)v*

@



COMPUTATICN . IDproblem

Traveling wave
(u*’ v*’ W*, C)

u; = LeAu + fyk(w)vw — au
vy = Av + Pev, — yk(uw)vw
wy = —H,,yk(u)vw

Parameter values : ¢ = 1.25091

Le =0.3
g = 20.0
y = 5.0
H, =1.0
a = 0.28 2D problem (w)

Pe = 0.2

—

1

red

unbur

Wavy front/ O



EIGENVALUES

unburned

ReA

10- and 11-modes are
most unstable.




Thank you for your kind attention!
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"Two phase Stefan problems as the singular limit of y

competition-diffusion systems arising in population dynamics"

Danielle Hilhorst (Université Paris-Saclay, France)

Competition-diffusion systems are coupled systems of nonlinear parabolic equations, where the unknown functions
represent the densities of interacting biological populations. We will first study the singular limit of of a two-component
competition-diffusion system in population dynamics when the interspecific competition rate tends to infinity [7], [8].
Using energy estimates, we will prove that the solution converges to the weak solution of a problem with a free boundary,
which Mayan Mimura used to call a Stefan problem with zero latent heat [1], [2], [3]. In biological terms, this amounts
to proving that the habitats of two interacting populations become completely disjoint in the fast reaction limit. We will
then consider a three component competition-diffusion system and prove that its solution converges to a Stefan problem
with positive latent heat [4], [6].

Another question involves the limit of the Stefan problem as the latent heat coefficient tends to zero; we will show that
it converges to the Stefan problem with zero latent heat [5]. A question which we have started to study is then the
following : can we prove a similar result in the case that the partial differential equations in the Stefan problems are
perturbed by a white noise in time [9]
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Social life with Mayan

In the occidental world, we always called Mimura sensei Mayan. | met
him very long ago, in the Netherlands. Most probably, we first met at a
Conference entitled : Conference on Analytical and Numerical
approaches to Asymptotic Problems, which took place at the University
of Nijmegen, in the Netherlands, on June 9-13, 1980. Since Mayan
was an important Professor while | was just a fourth year PhD student,
| did not have much chance to discuss with him. But then, on
December 2nd 1981, when | defended my doctoral thesis at the
University of Leiden, also in the Netherlands, Mayan was there visiting
my PhD supervisor Bert Peletier. And Bert requested me to invite
Mayan both at my doctoral defense and at the dinner which | was
offering at this occasion; it was then a tradition in the Netherlands to
organize a PhD dinner on the evening of the defense. This is how my
contacts with Mayan started.

Danielle Hilhorst Competition diffusion systems October 31st 2023 2/30
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Social life with Mayan

During many years, | often met Mayan, not only in France and in Japan
but also at various conferences all over the world. Mayan was always
full of life and happiness and had an incredible creativity. We
discussed about mathematics, and in particular about new problems
modeling biological phenomena posed by Mayan. | have worked a lot
about some of these problems together with PhD students, post-docs
as well as well-known mathematicians. | will show you some examples
in a little while.

Mayan loved to spend time in France, both for mathematics and
everyday life. He also showed an extraordinary hospitality to his
colleagues from all over the world that he invited in Japan. We all keep
a wonderful memory of these visits to Japan.
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The model problem : Dancer, DH, Mimura, Peletier

We consider the competition-diffusion system

owu = diAu+ f(u) — kuv, InQ xRt
(PK) Ov = dbAv + g(v) — akuv, inQ xRt

ou=0, 9,v=0, on 90 x Rt

u(-,0)=uf, v(,0)=vs, onQ,

where

f(s) = As(1 — s),9(s) = us(1 — s);

k, o, dy, db, A, u are positive constants;
uﬁ, V¥ € C(Q),0 < yg, vy < 1;

us — up, V& —= v in L5(Q) as k — oo.

u, v are the densities of two biological populations;
A, i are the intraspecific competition rates;
k, ak are the interspecific competition rates.
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The main question

Our main question:

Let (uk, vk) denote the solution of Problem (P*). What is the

singular limit of the solution pair (u*, v¥) as k — 00?
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A priori bounds

By a solution of Problem (P¥) we mean a pair of functions (u*, v¥)
such that u%, vk € C(Q) N C>1(Q x [6, T]) for all 6 € (0, T). We begin
with a priori bounds for solutions of Problem (7).

Lemma. Let (u¥, v¥) be a solution of Problem (P¥). Then
0<uk<tand0<vk<1inQ, where Q :=Q x R*.

Proof. This assertion follows from the maximum principle.
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Existence and uniqueness - a priori estimates

The existence and uniqueness of the solution (u*, v¥) of Problem (P*)
follows from [Lunardi, Proposition 7.3.2].

Next we obtain a priori bounds for the solution (u*, v¥) of Problem (Pk)
which are uniform with respect to the parameter k in the equations.
This will enable us to study the properties of the family of solutions
(uk, vk) for large values of k.

/ / uAvk < S0 T +1).
Proof. Integration of the equation for uk over QT =Q x (0, T) yields

kfonQ“ vk _d1fo faQ 8 / /f / (T)+/ng

< (bT+1)|Q.

Lemma. We have
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A priori estimates

Lemma. There exists a positive constant C, which does not depend on

k, such that
-
/ /\Vuk|2 <c,
o Ja

.
//\Vvk|2§C.
0 JQ

Proof. We multiply the first equation in (P*) by u and integrate on Q.
This yields

and

1d
2dt/ Uk+d1/|VUk| +k/Uka<£0‘Q|

where we have used the bounds on u* and vX. When we integrate on

(0, T) we obtain the first estimate. The second estimate can be proved
in a similar way.
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A way to eliminate the large parameter k

Next we consider the function

which appears when we want to eliminate the terms involving k from
the partial differential equation. It satisfies

1 :
zf = di AUk — %Av" + uFF(UF) — av"g(v") in Qr
together with the homogeneous Neumann boundary condition

G
W—Oon ST = 00 % (O,T)
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Where do we stand now?

We have L>(Q7) estimates for u¥ and vX, and L?(Q7) estimates for
|VuK| and |V vE|.

This is not sufficient to pass to the limit as kK — oo, even though it
would be if we would work on an elliptic problem. Here we need some
extra knowledge about either the time derivative of the solution pair or
differences of time translates of the solution pair.

We apply the Fréchet-Kolmogorov Theorem (see for instance the book
of Brezis on functional analysis).
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We deduce that the sequences {uk} and {vi} are relatively compact in
L?(Q7). In particular, there exist subsequences of {t*} and {vk},
which we denote again by {u*} and {v¥}, and functions T and v in
L?(0, T; H'(Q)) such that, as k — oo, u¥ and v¥ converge to their limits
U and v strongly in L2(Q7), a. e. in Qr and weakly in L2(0, T; H'(Q)).
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Characterization of the limit functions

Lemma. Let T be an arbitrary positive number. The limit functions
(4, Vv) are such that

/0 T /ﬂ{ (5 37)¢~ V(o - 27) 9o+ (a1(@) - 797)) )

=~ [~ )00
[¢) (0]

for all functions ¢ € C>°(Qr) such that ¢(T) = 0.

Proof. When we multiply the equation for z¥ by a test function
¢ € C3°(Qr) such that o(T) = 0, and integrate by parts, we obtain the

identity -
/O /Q{(Uk - évk>80t - V(d1 e — C;'fv")Vw
+ (U (k) - évkg(v"))so} =- /Q (uf - ‘f)so(O)-
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Characterization of the limit functions

We now let k — oo along a sequence for which u* and v strongly
converge in L2(Qr) and a. e. to their limits. Then, because

k

u* — u, and v

—V as K— oo ae. in Qr,

and |uX|, |vK| < 1 for all k > 1, it follows by the dominated convergence
theorem that

/OT/Qukf(uk)—>/oT/Quf(u) as Kk — oo.

A similar result holds for the sequence {v¥g(v¥)}. Passing to the limit
in the equality above permits to complete the proof.
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Characterization of the limit functions

Next we show that the function

is a weak solution of Problem (P) defined by

0z =V(d(2)Vz)+ h(z), inQ xRT,

(P) 0,z =0, on 9 x R,
. Yo
z(-,0) =29 :=up — — on <,
where
d(s)={d; if s>0, d if s<O0},
and

h(s) = {f(s)s if s>0, g(—as)s if s<O0}.
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Characterization of the limit functions

Definition. A function z is called a weak solution of Problem (P) if
z e L2(Q x RY)NLE(0, T, H(Q));

/ (2ot d2)v2ve+ 2o} = [ 20000

for all functions ¢ € C>*(Qr) such that ¢(T) =0 and for all T > 0.
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Characterization of the limit functions

Lemma. The function z is a weak solution of Problem (P).

Proof. We already know that z € L>°(Q x R™) and that
z € L2(0, T; H'(Q)).

We observe that g
dy VU — f VV =d(2)Vz

and that _
uf(@) - ~g(v) = h(z).

Therefore z satisfies the integral equality

/ /{Z«pr Z)VzVp + h(z)p} = / Uo—*o)sr?(o)

for all functions ¢ € C*>°(Qr) such that ¢(T) =0and forall T > 0.

18/30
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Characterization of the limit functions

Thus z is a weak solution of Problem (P).
We also have the following result.

Lemma. Problem () has exactly one weak solution z, and
z e CPB/2(Q x [0,00)) forall g € (0, 1).

Danielle Hilhorst Competition diffusion systems October 31st 2023
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The limit problem as a free boundary problem

The limit problem is a free boundary problem. The free boundary
separates the regions where {u > 0,v = 0} and {v > 0, u = 0}.
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The limit free boundary problem

We can give both

e a weak form, where the free boundary does not explicitely appear;
e a strong form, with explicit boundary conditions.
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The convergence result

We have proved that as kK — oo,

k k

uc —zt, vk —az,

strongly in L?(Q7), where the function z is the unique weak solution of
the problem

01z = AD(z) + h(2), inQ xR,
P){ 9.2=0, on 90 x RT,

Vi
w(-,0) =2y :=up — —O, onq,
(6%

with D(s) := dis™ — dos™ and h(s) := f(s™) — g(as™), where
st = max(s,0) and s = —min(s, 0).
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The strong form of the limit free boundary problem

Assume that, at each time t € [0, T], there exists a close hypersurface
I(t) and two subdomains Q,(t), Q,(t) such that

Q=Qu()uQ(D), T(t)=Qu(t)NQ(D),
z(-,t) >0 on Qu(t), Z(-, ) <0 on Qy(t).

Assume furthermore that t — I'(t) is smooth enough and that
(u,v) := (z",az™) are smooth up to '(t). Then the functions u and v
satisfy

ou=diAu+f(u)y in Q:=U{Qu(t).te[0, T]}
otv = dbAv + g(v) in Qu:=U{Q(t),te [0, T]}

u=v=_0 onl:=J{I(f),tete|0,T]}
(P) d18nu_—%8n on I
ov=0 on 0Q x [0, T]

+ initial conditions.
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The two-component system

up,uz k=100 up,uz k=1000
1 . I
08 ’ 08 -
06 06
0.4 04
0.2 0.2
Pid X -' X
02 04 06 08 1 02 04 06 08 1
uru k=10000 upu k=100000
1 .-
0.8 o 0.8
06 4 0.6
04 04
02 02
x x
02 04 06 08 I 02 04 06 08 1
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Comments on the limit free boundary problem

This is a Stefan problem with zero latent heat.

This led us to search for a reaction-diffusion system whose solution
converges to that of a "real" Stefan problem

D. Hilhorst, M. lida, M. Mimura, H. Ninomiya, Japan J. Ind. Appl. Math.
(2001)

To that purpose we need
e A three component system,

e With two partial differential equations coupled to an ordinary
differential equation.
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A three-component reaction-diffusion system

We consider the system

Oiu = diAu + f(u) — ksyuv — kxsy(1 —w)u in Q x RT

Otv = dbAv + g(v) — kspuv — kAsowv in Q) x RT
(@) ow = k(1 — w)u — kwv in Q x Rt
ou=0, 9,v=0, on 00 x Rt

u(-,0)=uf, v(,0)=vk, w(,00=wf onQ,

uk, vk e C(Q), w¥ € L>(Q),

0 < uk, vk, wk <1,

ul — up, vE— vo, w§ = wp in L3(Q) as k — .

The function wk approximates the characteristic function of the habitat
of the population uX.
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The weak form of the limit free boundary problem

01z = AD(pA(2)) + h(pr(2)) in Q@ x RT
(Q)\) aV'D((p)\(Z)) =0 on 90 x RT

U V(
z(-,0) = 20 _ 0 4 Awp on Q,
Sq So

with

f(sirt Sor~
D(r) = chr — cr, h(r) o= T Iy
(r=X"-r".

We now have a Stefan problem with positive latent heat A. We also
define the limit functions

zZ— V4
u=sipa(zt), v=sipn(z), w=Z"2),
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The strong form of the Stefan problem with positive

latent heat

The functions u and v satisfy

otu = diAu + f(u) in Qu:=U{Qu(t),tel0,T]}
otv = doAv + g(v) in Q,:=UJ{Q(t),te[0,T]}
R u=v=_0 onTl :=J{l(t),t<[0, T]}
(Q ) AV, = —ﬂa,,u — %6,7v on
S1 So
a,v=0 on 02 x [0, T]
|+ initial conditions.
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Present work with Ciotir, El Kettani and Goreac

With Mayan Mimura and Reiner Schétzle, we have proved that, as
A — 0, the weak solution z* of Problem (Q*) converges to the weak
solution z of Problem (P).

Hilhorst, Danielle; Mimura, Masayasu; Schatzle, Reiner, Vanishing
latent heat limit in a Stefan-like problem arising in biology, Nonlinear
Anal. Real World Appl. 4 (2003), no. 2, 261-285.

With Ciotir, El Kettani and Goreac, we are adding a multiplicative noise
involving a white noise in time on the right-hand-side of the partial
differential equation for z*, and try to prove a similar result. This study
is rather technical but | believe that it will work out.
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Mayan, may you rest in peace.
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"The floodgates to pattern formation problems"

Yasumasa Nishiura (Hokkaido University, Japan)

W. T. Gowers, a Fields medalist from Cambridge in 1998, eloquently expounded on the pivotal role of Paul Erdds
in his essay titled "The Two Cultures of Mathematics." He (Erdds) is famous not because it has large numbers of
applications, nor because it is difficult, nor because it solved a long-standing open problem. Its fame rests on the fact

that it opened the floodgates to probabilistic arguments in combinatorics.
In a similar vein, Mayan Mimura opened a parallel set of floodgates, ones that lead to the modeling and analysis of

reaction-diffusion equations. I am eager to trace the initial footsteps of Mayan and delve into the lasting impact of his

contributions on present-day research.
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The floodgates to pattern formation problems

Yasumasa Nishiura

ICMMA 2023 at Meiji University
“In memory of Professor Mayan Mimura”



* Encounter with Mayan in early 70’s (Konan Univ)

— Prof. Yamaguti‘s seminar

Encounter
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— Debate on “what is a good math model?”

* Scientific collaboration in 80’s and early 90’s (Hiroshima Univ)
and discussion about the embryonic stage of the issues:

— On the necessity to establish an applied mathematics major.

— Importance of computational approach

— How should mathematics establish its relationship with various
sciences?

(R LEDER)

— Combining science and the humanities is quite challenging.
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C.P. Snow “The Two Cultures and the Smentlflc Revolutlon”
[2DD e EFlFEdn

AXHIXIE vs *4—?!34]3(“:

(The arts vs Sciences)

In his famous Rede lecture of 1959, entitled “The Two Cultures”, C. P. Sno
that the lack of communication between the humanities and the sciences was very harmful,
and he particularly criticized those working in the humanities for their lack of understand-
g of science. One of the most memorable passages draws attention to a lack of symmetry
which still exists, in a milder form, forty years later:

A good many times I have been present at gatherings of people who, by the standards

of the traditional culture, are thought highly educated and who have with considerable

gusto been expressing their incredulity at the illiteracy of scientists. Once or twice I

have been provoked and have asked the company how many of them could describe

the Second Law of Thermodynamics. The response was cold: 1t was also negative.

Yet I was asking something which is about the scientific equivalent of: Have you read

a work of Shakespeare’s?

“Third culture” by John Brockman



Thomas Kuhn “Paradigm Shift”

Those who a paradigm
through lon )S, engage
in scientific ety rm of
puzzle-solvi -adigm.
Much of sci 1ce, IS
nothing but

However, paradigms are not always secure indefinitely. Puzzles
gradually run out, and, conversely, anomalies that cannot be dealt
with by the paradigm accumulate. This eventually leads to a crisis
of the paradigm, and from the midst of that confusion, a new
paradigm emerges, leading to a "scientific revolution.”

It is not clear what is a paradigm in mathematics, namely once it
was proved rigorously, it becomes eternal. How about Kurt Goédel?

Thomas, K. (1962). The structure of scientific revolutions Chicago: University
of Chicago Press.
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The Two Cultures of Mathematics.

W. T. Gowers

Problem solver vs Theory builder W. T. Gowers is a British

mathematician
(combinatorialist) at Cambridge

e - . awarded Fields medal 1998.
Criticisms of Combinatorics Since 2020, he is a professor at

(from core mathematics) the Collége de France, born in
1. Lacks direction, or goals of a general kind 1963.
2. Not particularly deep

3. No interesting connections to other parts of
mathematics (core mathematics)
4. Many of them do not have applications

Moreover, mathematicians in the theory-building areas often regard what they are doing as the central
core of mathematics, with subjects such as combinatorics thought of as peripheral and not particularly
relevant to the main aims of mathematics.

One can almost imagine a gathering of highly educated mathematicians expressing their incredulity

at the ignorance of combinatorialists, most of whom could say nothing intelligent about quantum
groups, mirror symmetry, Calabi-Yau manifolds, the Yang-Mills equation, solitons or even cohomology.
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These criticisms can be answered in a similar way. Consider first the notion
that there are not general goals in combinatorics. | quote again from the
interview with Atiyah [A1]:

“I was thinking more of the tendency today for people to develop whole areas
of mathematics on their own, in a rather abstract fashion. They just go on

beavering away. (#-o>#EEH<)
If you ask what is it all for, what is its significance, what does it connect with

you and that they don't know.

AL}

Atiyah was not particularly referring to combinatorics, but he makes a
powerful point, and it is as important for combinatorialists as it is for anyone
else to show that they are doing more than merely beavering away.
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An Interview With Michael Atiyah

Michael Atiyah was born in 1929 and received his B.A. and Ph.D. from Trinity College, Cambridge
(1952, 1955). During his career he has been Savilian Professor of Geometry at Oxford (1963-69)
and Professor of Mathematics at the Institute for Advanced Study in Princeton (1969-72); he is
currently a Royal Society Research Professor of Mathematics at Oxford University.

Among other honors Professor Atiyah is a Fellow of the Royal Society and a member of the National
Academies of France, Sweden, and the USA. He received the Fields Medal at the International
Congress of Mathematicians held in Moscow, 1966. His research interests span a broad area of
mathematics including topology, geometry, differential equations and mathematical physics.

The following is an edited version of an interview in Oxford with Roberto Minio, former editor
of The Intelligencer.

THE MATHEMATICAL INTELLIGENCER VOL. 6, NO. 1 © 1984 Springer-Verlag New York



Why should problem-solving subjects be less highly regarded than theoretical ones?

To answer this question we must consider a more fundamental one: what makes one piece
of mathematics more interesting than another? Once again, Atiyah writes very clearly

and sensibly on this matter (while acknowledging his debt to earlier great mathematicians
such as Poincar e and Weyl). He makes the point (see for example [A2]) that so much
mathematics is produced that it is not possible for all of it to be remembered. The processes
of abstraction and generalization are therefore very important as a means of making sense
of the huge mass of raw data (that is, proofs of individual theorems) and enabling at least
some of it to be passed on. The results that will last are the ones that can be organized
coherently and explained economically to future generations of mathematicians. Of course,
some results will be remembered because they solve very famous problems, but even these,
if they do not into an organizing framework, are unlikely to be studied in detail by more

than a handful of mathematicians.

RIEE—RELLZTNIE, RAIXHEDHLL.

The important ideas of combinatorics do not usually appear in the form of precisely stated theorems,
but more often as general principles of wide applicability.

Combinatorics TIXZDIMNFILED. A [XErdos DHITIZ

This result of Erdos [E] is famous not because it has large
numbers of applications, nor because it is difficult, nor because
it solved a long-standing open problem. Its fame rests on the
fact that it opened the floodgates to probabilistic arguments in
combinatorics.



Theorem. For every positive integer k there is a positive integer N, such that if the edges
of the complete graph on N vertices are all coloured either red or blue, then there must

be k vertices such that all edges joining them have the same colour.

SOME REMARKS ON THE THEORY OF GRAPHS
P. ERDOS

The present note consists of some remarks on graphs. A graph G
is a set of points some of which are connected by edges. We assume
here that no two points are connected by more than one edge. The
complementary graph G’ of G has the same vertices as G and two
points are connected in G’ if and only if they are not connected in G.

A special case of a theorem of Ramsey can be stated in graph theo-
retic language as follows:

There exists a function f(k, 1) of positive integers k&, I with the fol-
lowing property. Let there be given a graph G of n=f(k, I) vertices.
Then either G contains a complete graph of order k, or G’ a complete
graph of order /. (A complete graph is a graph any two vertices of
which are connected. The order of a complete graph is the number of
its vertices.)

It would be desirable to have a formula for f(%, I). This at present
we can not do. We have however the following estimates:

THEOREM 1. Let k= 3. Then
2¥2- & f(k, k) S Carspa < 4%L

The least integer N that works is known as R(k).

Lower bound: R(k) > 2*/2. probabilistic method
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Some branches of mathematics are dominated by a small number of problems of
universally acknowledged importance. One can justify many results by saying that,
in however small a way, they shed light on the Riemann hypothesis, the Birch-
Swinnerton-Dyer conjecture, Thurston's geometrization conjecture, the Novikov
conjecture or something of the kind.

Combinatorics T3V LFILEITER S

It would be difficult to demonstrate that combinatorics had many general goals of
the sort just mentioned (with the one exception of the P=NP problem).

However, just as the true significance of a result in combinatorics is very often
not the result itself, but something less explicit that one learns from the proof, so
the general goals of combinatorics are not always explicitly stated.

Something similar?
The dichotomy of Applied Math vs Pure Math



How do you select a problem to study?

MINIO: How do you select a problem to study?
ATIYAH: I think that presupposes an answer. I don’t think that’s the way I work
at all. Some people may sit back and say, “I want to solve this problem”™ and they

sit down and say, “How do I solve this problem?” I don’t. I just move around in

the mathematical waters, thinking about things, being curious, interested, talking to

people, stirring up ideas; things emerge and I follow them up. Or I see something
which connects up with something else I know about, and I try to put them together
and things develop. I have practically never started off with any idea of what I'm
going to be doing or where it’s going to go. I'm interested in mathematics; I talk, I

learn, I discuss and then interesting questions simply emerge. I have never started off

with a particular goal, except the goal of understanding mathematics.

[23] R. Minio: “An interview with Michael Atiyah,” Pokroky Mat. Fyz. Astronom. 31:3
(1986), pp. 154-168. Czech translation of article from Math. Intell. 6:1 (1984). MR 857260



Floodgates

* Finding of new things:
— Finding of new phenomena
* (Quasi-crystal, chaos, ...
— Finding new (simple) model
 Landau model, Kuramoto model, ...
— Finding of new methods

 Connecting two different concepts

— Important in Mathematics
* Trigger to explore a new world

— Introduce a new insight to a hard problem (like Paul Erdos)
e Establish a common platform for applied mathematicians
— Collaborations with interdisciplinary people
— Incubator in all directions
— Mayan was skilled at conversation and good at winning people over.



MIMS

Mayan’s dream of Applied Math Dept. with many twists and turns starting
around late 80’s, tough negotiations with deans and presidents
— Hiroshima Univ.
* Dept. of Mathematical and Life Sciences (1999)
HIESFEMEFER
* Graduate School of Integrated Sciences for Life (2019)
Program of Mathematical and Life Sciences
— Meiji Univ.
 MIMS was established!

MEXT Joint Usage / Research Center

"Center for Mathematical Modeling and Applications"(CMMA)
Meyt University, Meyt Institute for Advanced Study of Mathematical Sciences (MIMS)

* Combining science and the humanities is quite challenging. (XER&IEBEETIEAL)

"Ecocultural range-expansion model of modern humans in Paleolithic" by Joe Yuichiro
Wakano (Archaeology based on ancient DNA analysis)

Soft science vs Hard science



Soft science vs Hard science

S. Huntington. S. Lang

Soft sciences are often harder than hard sciences
Discover (1987, August) by Jared Diamond

HEBMROX ¥ v 75 b I bF R

n '"The overall correlation between frustration and instability (in 62 countries of
SAMUEL P the world) was 0.50." --Samuel Huntington, professor of government, Harvard

HUNTINGTON

Serge Lang
Algebra

"This is utter nonsense. How does Huntington measure things like social
frustration? Does he have a social-frustration meter? I object to the academy's
certifying as science what are merely political opinions." -- Serge Lang,
professor of mathematics, Yale

“pseudo Mathematics” by Huntington

n '"What does it say about Lang's scientific standards that he would base his case
on twenty-year-old gossip?'' . . . ""a bizarre vendetta'" . . . "'a madman . . ." --
Other scholars, commenting on Lang's attack

Lang vs. Huntington might seem like just another silly blood-letting in the back alleys
of academia, hardly worth anyone's attention. But this particular dogfight is an
important one. Beneath the name calling, it has to do with a central question in

science: Do the so-called soft sciences, like political science and psychology, really
constitute science at all, and do Eﬁey deserve to stand beside "hard sciences, "Tike

chemistry and physics?




But NAS is more than an honorary society; it's a conduit for advice to our
government. As to the relative importance of soft and hard science for humanity's

future, there can be no comparison. It matters little whether we progress with
understanding the diophantine approximation. Our survival depends on whether we
progress with understanding how people behave, why some societies become
frustrated, whether their governments tend to become unstable, and how political
Teaders makKe decisions lIKe whether to press a red button. our National Academy of

Sciences will cut itself out of intellectually challenging areas of science, and out of the
areas where NAS can provide the most needed scientific advice, if it continues to
judge social scientists from a posture of ignorance.

(NAS: National Academy of Sciences)



Summary

The Two Cultures: C.P. Show
— The arts vs Sciences:

The two cultures of Mathematics: W.T. Gowers
— Michael Atiya’s Interview

Soft sciences vs Hard sciences: Jared Diamond
— Huntington vs Serge Lang

Border between pure and appl is disappearing.
— Appl. Math broadens the spectrum of pure math.

— Appl math demands all mathematics.



There still remains a gap, however,

* Mayan Mimura opened the floodgates to pattern
formation problems!

— New modeling in mathematical biology
— New collaborations among interdisciplinary fields
— New institute where two cultures meet

Above all, it has bestowed upon me the joy and delight of
scholarly exploration
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Thank you for listening!
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"Keller-Segel type approximation for nonlocal

Fokker-Planck equations in one-dimensional bounded domain"

Yoshitaro Tanaka (Future University Hakodate, Japan)

To describe biological phenomena such as cell migration and cell adhesion many evolutional equations are proposed in
which an advective convolution term with a suitable integral kernel is imposed. It is well known that such nonlocal
equations can reproduce various behaviors depending on the shape of the integral kernel. These nonlocal evolutional
equations are often difficult to analyze, and the analytical method is developing. In the light of these background we
approximate the nonlocal Fokker-Planck equations by the combination of a Keller-Segel system which is a typical and
locally dynamical system. We will show that the solution of the nonlocal Fokker-Planck equation with any even
continuous integral kernel can be approximated as a singular limit of the Keller-Segel system with specified parameters.



ICMMA 2023, “Reaction—diffusion systems: from the past to the future ” in memory of Prof. Masayasu
Mimura, Meiji University, 1 Nov. 2023. Chair: Toshiyuki OGAWA

Keller—-Segel type approximation for nonlocal
Fokker—Planck equations in one—dimensional
bounded domain

Speaker:()Yoshitaro Tanaka (Future University Hakodate)

Collaborator: Hideki Murakawa (Ryukoku University)

Dedicated to the memory of Professor Masayasu Mimura

Supported by JSPS, Grant number JP20K1436 *




Nonlocal interactions

Nonlocal interactions (spatially long range interactions) have m
attracted attentions in various fields:

@ Neural firing phenomenon [s. Amari Bio. Gybernetics 1977], [C. Laing & W. Troy Phsica D 2003],
@ Pigmentation pattern in animal skin [up. Murray, Springer 20031, [S. Kondo, J.T.B. 2017]

Typical modelings:
u = u(z,t):some density, K = K(x): an integral kernel,
Spatial convolution with suitable integral kernel K xu = /K(x — y)u(y, t)dy

Normal type Advective type
up =K xul—bu—+ -+, us = =V - (uV (K *u)) + - -
Dispersal, Growth rate= - - Velocity

b > (0:a const.

[c.f. Ninomiya, T., Yamamoto, JM.B 2017, J.JILAM., 2018]



Biological examples of nonlocal interactions

@ Cell size and cell projections

*Pigment cells in skin of zebra fish
[Yamanaka, Kondo, P.N.A.S., 2009]  [Yamanaka, Kondo, P.N.A.S. 2009] [Kondo. J. Theor. Biol., 2017]

RN

projection

pe(lz| = 1),
pe € Cy°,

*HEK 293 cells for experiments of cell adhesions
[Togashi et al. J. Cell Biol. 2016] [Murakawa, Togashi, J.T.B., 2015]

Movies of cell migration and adhesions: Shematic figure of
sensing function:

Size of cell body
1
Sensing function

10



Mathematical models with advective non—local interactions

(1) Aggregation diffusion model (Collective motion & cell migration)
[Carrillo, Craig, Yao, Model. Simul. Sci. Eng. Technol., 2019 ]

pr =Ap" =V - (pV(K xp)), m=>1

advection

m = 1 — linear diffusion Pzz : Nonlocal Fokker—Planck equation

@ Cell adhesion model [Togashi, Murakawa, J.T.B., 2015], [Carrillo, Murakawa,
Sato, Togashi, Trush, J.T.B., 2019]

O A2 =V (u(1 — W) V(K )+ Fu),

ot advection K(gj) .

K(x) = (R — |z|)xB(0,r)(), R > 0: Size of cell body,
| ifz e B(0,R),

0 otherwise

B(07R> Ba”, XB((),R)(CC) — {

11



Partial

Motivation & Aim :1

@ Motivation: To analyze (multiple components) cell adhesion model

ou 9
> = Au” =V - (u(l —u)V(W xu)) + f(u)

t

Porous medium type advection

*Difficulties: Nonlinear diffusivity & nonlocality

* Approximation for nonlinear diffusion by linear diffusion
[Murakawa, J.J.LAM., 2018]

@ Aim: As a first step, we reveal whether the advective nonlocal
interaction in the nonlocal Fokker—Planck equation can be
approximated by a Keller—Segel system or not

Nonlocal Fokker—Planck equation
0 0
— Pxx — W )
Pt = Pz — - (p 5. (W)

12



Model: Nonlocal Fokker—Planck equation

We analyze the following nonlocal Fokker—Planck equation:
velocity

Op 0%*p O 0
(P) {m = 912 Ox (pax(W*p)j’ t>0, 2€Q:=[-L, L
p(x,0) == po(x) € CZ(Q)

J

where periodic B.C. is imposed and W «u = /L W (x — y)u(y, t)dy for
—L
2L-periodicW ¢ L' (Q).

1 L —
cosh ’117|

N Z@Sinhﬁ \/E ’

B(0, R) : a ball with radius R, XB(7): characteristic func.

@® Typical examples: K(z) = (R — |z))xBo.r)(2), k;(z)

@®|(W = p).|= W *p, is the velocity of advection term.
Examples of W(z): K(z) . kj(x)




Keller—Segel system for approximation

We introduce the auxiliary attractive and repulsive substances
j

vi(z,t), (j=1,---,M) in the part of advective nonlocal interaction.

[c.f. Ninomiya, T., Yamamoto, JM.B 2017, J.J.LAM., 2018]
( M

Pi = Paw = 8833 (peaa:UZajvj),

j=1
(KS.) 4 | |
(,U;)t: g(d](vj)m—vj—kps), (j :17"'7M)7

L p°(2,0) = po(2), vj(x,0) = (v5)o(x) € C*(Q)

where )0 <e <1, d; >0, and {aj}j-wzl are nonzero constants.

@® If v =1, (KS.) becomes the Keller—Segel eq. with linear sensitive func.

@ Taking the limit of¢ — 0, we expect that 0 = d;(v5),. — v§ + p°.
Base of non-local interaction
In fact, we have v5(xz,t) = (k; * p°)(2,t), where k;(z) := ————— cosh

J
- (P) withw(z) = j;ajkj(m) 16




Main result 1: singular limit & order estimate

~ Theorem 1:

Let M be an arbitrary fixed natural number, and p(z,t) be a solution

of (P) equipped with W = a;k;(z) and the initial value po(z) € C*(9),

and p°(z,t) be a solution of (KS.) equipped with

(1) (Pgav‘i» e w?w)(fv,@) = (po, k1 * pos - - - kar * po) ().

Then, for anye > 0and T > 0, there exist positive constants C; andC:

which depend on a; and T, but are independent of € such that
Sup Hp6<'7t) _ p('vt)HC(Q) < Cie,
te[0,T]

sup Hv t) —kj*p(-
t€[0,T]

HC’(Q) < 028

17



A natural question

What is the relationship between any even potential and
the Keller-Segel system?

(KSe) < J

18



Realization of any even kernel

. 1 .
Settingd; = ——— , we have k() = — / i cosh(j — 1)(L — |z|).
(] _ 1)2 2sinh(7 — 1)L

We set d; is sufficiently large.

_ Theorem 2 (cf. Existence of {Cj}?:o : [Ninomiya, T., Yamamoto, JM.B., 2017]) —.

Assume that W(z)is even in {2 and in C™([0, L]) and, let f(x) be
f(x) :=W(L —log(x + Va2 — 1)) = W(cosh (L —z)) . Then, for any n € N there
exist explicit {¢;}7— such that

sup ‘W(x)— c-coshj(L—x)’ < -
x€[0,L] Z ’ 2 (

J=0

max | (y)].

1 ((:os.hL—l)n+1
y€[1l,cosh L]

n+1)! 2

From this theorem, we can approximate the solution of (P) with any
kernel by solution of (KS.)with specified parameters.

2Lcy (j =1),

2¢c;j_1sinh((j —1)L)/(j —1) (j=2,...M) for k;(z) .

We set a; —{

19



' : : ki(x)
Realization of arbitrary kernel jk

— Theorem 3:

For any even 2L—periodic C"(|0, L]) function W, anye > 0 and any
T > 0, there exist a Keller—-Segel system(KS.) with M + 1 component,
and a positive constant Cr independent of € such that

Sup Hps(°7t) o p(at)HLQ(Q) < CTg
te[0,T]

where p is the solution of (P) equipped with po(z) € C*(Q) and
p° is the first component of (KS.) equipped with (1).

Numerical experiments: Profiles of T}/ and
(P) time=0.000,  dt=0.001, mu=5.00, (KSE) time=0.000, ch cosh(L — |zl)

0 0 2.0

W(z) =e ", po(z) =1+ &(x), p=5.0, di = 1000000, M =7 20

o



Concluding remarks

@® Combining the solution of a Keller—Segel system with the linear
sensitive function (KS.) can approximate the solution of the
nonlocal Fokker—Planck eq. with any integral kernel in L?.

(P) (KS:)

,Ot:ﬂm—ag( 83 (W*p)) ~ < i _'Om_%( 89@2% 3)

1
= 0H0 L) =~ (0)ae — 05 +09), (=1, M),

@ The time of numerical simulation of (KS.) is shorter than that of (P).

(Typical scheme of numerical integration was applied in(P).)

@® We will extend our theory to case of higher dimension and the

model of cell adhesion.
21



time=0.00000,

Numerical results in 2D

dt=0.0005, mu=1.00,

seed=500000,

time=0.00000,

dt=0.0005, mu=5.00,

W=

seed=500000,

(P)

dp 0%p 0

ot Ox2 “ax

dp o D

ot o2 Mox

(v

l—p

%(W*p)>,

volume filling effect

22
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"Spreading fronts arising from the singular limit of reaction-diffusion systems

Chang-Hong Wu (National Yang Ming Chiao Tung University, Taiwan)

To gain insight into the formation of spreading fronts of invasive species, in this presentation we will focus on the

singular limit of reaction-diffusion systems.
We investigate the dynamics of the limiting systems and give some interpretations for spreading fronts from the

modeling viewpoint. The talk is based on joint works with Hirofumi Izuhara and Harunori Monobe.



Spreading fronts arising from the singular limit of
reaction-diffusion systems

Chang-Hong Wu
National Yang Ming Chiao Tung University

Based on joint works with Hirofumi lzuhara and Harunori Monobe

Reaction-diffusion systems: from the past to the future
dedicated to the memory of Professor Masayasu Mimura
2023.10.31-11.2 ICMMA, Meiji University



Outline

@ Introduction

@ Spatial segregation limit
@ Numerical results

@ Summary
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The habitat segregation phenomenon

@ Mimura-Yamada-Yotsutani (1985,1986,1987)

ur = diux + f(u), 0 < x < h(t), t>0,

Vi = Vi + g(v), h(t) < x <1, t>0,

U(O,t) =M, V(1,t) =M, t>0,

u(h(t),t) = v(h(t),t) =0, t >0,

H (t) = —p1ux(h(t), t) — pavx(h(t), t), t > 0,

h(0) = hy € (0,1),

u(x,0) = uo(x), 0 < x < hg, v(x,0) = w(x), ho < x < 1.

@ The global existence, uniqueness, regularity, asymptotic behavior of solutions,
and stability of stationary solutions

Mo

u
M1 \%

0 h(t) 1

@ Classical Stefan problems arise in many physical problems such as the melting of
materials and freezing of liquid (Rubinstein 1971)
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The spreading of an invasive species

@ Du-Lin (2010):

Uy = dux + u(a—bu), 0 < x < h(t), t>0,
ux(0,t) =0, u(h(t),t)=0, t>0,

H(t) = —pux(h(t), t), t >0,

h(0) = ho, u(x,0) = uop(x), 0 < x < ho,

@ Spreading-Vanishing dichotomy

iti R d
e critical length: h* := %/ %

@ Semiwaves exist when ¢, € (0,2v ad)

@ The global dynamics (Du-Matsuzawa-Zhou 2014, 2015)
0 If hoo := lim¢_ o0 h(t) = oo, then u(x, t) = Ue,(h(t) — x) uniformly in x, as t — co.
@ A biological explanation for FBC: population loss (Bunting-Du-Krakowski 2012)

U (t=0) initial

u"(x)
— - \Qm -
di X

< when spre: =
lo occurs £t

. Semi-wave
With the form

h(t) = ct, u(x, t) = U(ct — x),
cU' = dU" + U(a— bU) in (0, )
U0)=0, Ul)=a/b U,(0) = co/p.
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@ Scalar equations: see also Kaneko-Yamada (2011), Bunting-Du-Krakowski
(2012), Chang-Chen (2012), Du-Matano-Wang (2014), Du-Lou (2015),
Du-Matsuzawa-Zhou (2014,2015), Kaneko-Matsuzawa (2015,2018), Wang
(2015,2016), Monobe-W. (2016), Zhao-Wang (2018),
Kaneko-Matsuzawa-Yamada (2020,2022,2023), El-Hachem-McCue-Simpson
(2021) and more.

@ Guo-W. (2012): two species with the weak competition
U=Ux+u(l—u—kv), 0<x<s(t),t>0,
Vi = Dvix + rv(1 — v — hu), 0 < x < s(t), t >0,
ux(0,t) = w(0,t) =0, u(s(t),t) = v(s(t),t) =0, t >0,
S/(t) =M UX(S(t)v t) - /U'ZVX(S(t)7 t)7 t>0,

t Spreading front
i u(o,t)=0 x=s(t)
AN TSy u(s(),H=0
v(s(t),t)=0
- X
x=s(t) So

@ See also Guo-W. (2015), W. (2015, 2019), Du-W. (2018,2022), Wang-Zhang
(2017), Liu-Huang-Wang (2019) for models with two different spreading fronts.
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@ Question: can reaction-diffusion systems approximate these problems?

@ Fast-reaction limit, spatial segregation limit: Hilhorst-van der
Hout-Peletier (1996), Dancer-Hilhorst-Mimura-Peletier (1999),
Ei-lkota-Mimura (1999), Hilhorst-lida-Mimura-Ninomiya (2001),
Hilhorst-Mimura-Schatzle (2003),
Crooks-Dancer-Hilhorst-Mimura-Ninomiya (2004),
Crooks-Dancer-Hilhorst (2007), Alfaro-Hilhorst-Matano (2008),
Hilhorst-Mimura-Ninomiya (2009), Murakawa-Ninomiya (2011) and more
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Competition models with a small parameter

Izuhara-Monobe-W. (2023):

n
1 .
Orl; = diAu; + fi(ui) — Z hy(ui, up) — EFI(UM w), in Qr,
=1,
n B
(P.) 8,W:dew+g(W)—Z;'H(uf,w), in Qr,
i=1
C(LU,' = &,W = 07 on 8OT7
(ui(x,0), w(x,0)) = (uj0(x), wo (X)), inQ,
@ i=1,---,n,Qis a bounded domain in RN with smooth boundary 99,
Qr:=Qx(0,T],0Qr :== 92 x (0, T].
@ d >0,8>0,¢>0anddy >0 (if dw = 0, O, w = 0 is dropped)
@ f; and g stand for the intraspecific growth functions of u; and w, respectively;

@ h; measures the interspecific competition from the species u; to species u;;
@ F; measures the interspecific competition between the species u; and w.

@ lzuhara-Monobe-W. (2021) considered n =2, g =0and d, = 0.
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Competition models with a small parameter

@ In this talk, we consider

uj w
fi(u) = r,-u,-(1 - ?’) hy = ouiy;,  Fi(u, w) = yiuiw,  g(w) = rww(1 - K—)
1

@ For initial data, 0 < u;o < K, 0 < wp < Ky and ujo € C(Q),

Wo € C(Q) if dw > 0; wo € L(Q) if dhw = 0.

Proposition
Forany T > 0 and e > 0, there exists a unique solution (uf, w®) to (P:) with the following

regularity
(i) ifdw >0, 7 _
uf,w® e C(Qr)n C*'(Q x (0, T))
(i) ifdw =0,

Ui € C(Qr)n C' ((o, Tl; C(ﬁ)) n C((o, T W“’(Q)), w® e C'([0, T]; L=(Q))
fori=1,2,--- ,nand Qr := Q x (0, T]. Moreover,

0<u <Ky i=1,..n and 0<w <Ky.
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The case dy, =0

We first consider dy = 0:

n
1 .
Oy = diAu; + f(u) — > hylu, u) — —Fi(u,w),  inQr,

=1, j#
" B; .
(P.) atw:g(w)—Z%E(u,,w), in Qr,
i=1
oy =0, on dQr,
(ui(x,0), w(x,0)) = (uio(x), wo(x)), inQ,

@ Claim: there exist &;, W € L?(0, T; H'(Q)) such that
ui — i, w°— W strongly in L2(Qr) and weakly in L3(0, T; H'(Q))
as ¢ — 0 (up to a subsequence) and
Uiw =0 a.e.in QrVi (Segregation property)

@ Multiplying the equation of u; by 3; and sum them up for i:

n

> Biowi =y [ﬂfdu,AUr + Bifi(u) = > Biy(us, Uj)] -> %Ff(’-’i, w).
i=1 i=1

=1 =1, j#i

@ We subtract the equation of w from the above equation,

Z BiowUj — Ow = Z [defAU: + Bifi(u;) — Z Bihi(u;, U/)] —g(w).

i=1 i=1 j=1, j#i
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@ We multiply it by a test function ¢. Then, by integrating it over Qr, using integration by
parts,

/ o (iﬁf”f - W) Gt — i {ﬁidivuf V¢ + Bifi(ui)¢ — i Bihy(ui, U/)C]

= = j=1,
_‘/OT g(w)¢ = _./r_ (éﬁ;w,o - W0>C(x, 0),

where (u;, w) = (U, we).
@ Passing to the limit in € along a subsequence,

//O (iﬁ/ﬂf - W)afc - (_anﬁfdu,va/-) V¢ (2.1)

[Zﬁ,f(uwz > iy (0, y) — g () C ot

i=1 j=1,j#i
,/Q (;m,,o — w0)<(x,0) dx

for any ¢ € C*°(Qr) with ¢(x, T) = 0.
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@ Assume that 3Q+(t), Q2(t) and I'(t) are ‘good enough’:

Qi(t) = {x e Q|t(x,t)>0,i=1,2,..,n},
Qo(t) := {x € Q| W(x, t) > 0},
Q=i() UQa(t), T(t):=Q(t) N (L),

Qo(t)

(1)
@ Next, we define

Qr=J o x{t}, Qt= | t)x{t}, rr= |J rex={

0<t<T 0<t<T 0<t<T

@ By some assumptions on the smoothness of interfaces, we can separate Qr into Q%
and QZ, respectively, in the integral (2.1), we have

n O - a0+ dy bl -+ 1(8) — 3 hy(0.0)] et

=1 J=1 A
. . .

+// (O — g(l?v))dxdt—/ / {wv+ S pd,o.0)dadt,  (22)
[ o Jr( i=1

for any ¢ € C>(Qr) with ¢(x, T) = 0, where V denotes the normal velocity from Qi(t)
to Q2(t) at ['(t) and we further assume that initial conditions are segregated.
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Main result (d,, = 0)

Theorem (Izuhara-Monobe-W. 2023)

Assume that d,, = 0. Suppose that ' (t) is a smooth closed oriented hypersurface satisfying
02N 0 (t) =0 forall t € [0, T], and T(t) moves smoothly. Moreover, we suppose that w

is also smooth in Q2 and &i; (i = 1,2, ..., n) is smooth in Q}. Then W satisfies

d. i 2
&W(Xa ) =g(w), (xt)€Qr,

and (T;, Q;(t), T(t)) satisfies the following free boundary problem:

n
ow = didu; + fi(u) = Y hyu,y) Q@ i=1,2-n,
j=1, j#i

u=0 onlr, i=1,2,---,n,

n
w(x, t)V = — Z Bidiy i onrlr, (23)

i=1
w(x, 1) = wo(x) in GF.
u(x,0) = tio(x) in ©4(0), i=1,2,--,m,
w(x,0) = wo(x) in 22(0),

where

Qr= |J @ x{ty, = J @t)yx{t}, rr:= [J rex={.
0<t<T 0<t<T 0<t<T

= = =




Proposition (Izuhara-Monobe-W. 2023)
Assume thatQ = (—L, L) and

Competition-diffusion models
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s+(0) = £s0, Ui(x,0) = uio(x), X € [—S0, So] for some s € (0, L);
Uio € C*([—50, So]), Uio(£s0) =0, wo € C*([~L,L]), a € (0,1),
0 < uio(x) < Ki, x € [—S0, %0]; 0 < wo(x) < Kw, x € [-L, L],

Then the free boundary problem (2.3) admits a unique classical solution
(u,s) € [C*F*"" 2 (D))" x C'T2 ([0, T]), i=1,2,-- .,
for some small T > 0, where
Dr = {(x,t)| s—(t) < x < s.(t), t € (0, T]}.

Moreover, the unique solution can be extended up to a time T* satisfying either
lim¢ 7+ 84(t) = L orlim¢ ~7+ s_(t) = —L.

@ Since wp > 0in [—L, L] and w satisfies the logistic equation, we have k; > 0 such that
ki <w<kyforallt>0.

@ Contraction mapping principle
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Main result (d,, > 0)

Using a similar argument as in dy = 0, we can obtain

Theorem (Izuhara-Monobe-W. 2023)

Assume that d,, > 0. Suppose that T (t) is a smooth closed oriented hypersurface satisfying
QN o (t) =0 forallt € [0, T], and T'(t) moves smoothly. Moreover, we suppose that W is also
smooth in @2 and @; (i = 1,2, ..., n) is smooth in QL. Then (&;, W, Qi(t), T (t)) satisfies the
following free boundary problem:

n
ol; = duiALl,' + ff(Ll,') — Z /’),‘,‘(U,'7 U,') in O;—,
J=1, Jj#i

W = dwAw + g(w) in Q2,
u=w=0 onlr,

n 2.4
AdwuW + ) Bi0 0l = 0 onTr, &y

i=1
w =0 on 92 x (0, T),
u(x,0) = uio(x) in Q4(0),
w(x,0) = wo(x) in Q2(0),

@ When n = 1, the free boundary problem reduces to the one proposed by
Dancer-Hilhorst-Mimura-Peletier (1999).
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The revisit: the role of diffusion dj

We revisit the free boundary problem studied by Du and Lin (2010).
@ Consider

u,:d1uxx+u(a—bu)—%uw, xeQ, t>0,
b3 I3
1

w
—row(l — —)_ =8t t>0
Wi = ruw( K) - uw, xeQ, t>0,

ou=0, xe€dQ, t>0,

where up > 0 and wp > 0 are spatial segregated.

@ Consider 1D case and spatial symmetry, we are led to study
ur = diux + u(a—bu), 0<x<h(t), t>0,
ux(0,t) =0, u(h(t),t)=0, t>0,

/ d1 b31
H(t) = ———~———ux(h

(t) W(h(t),t)b13UX( (t)7t)7 t> 07
h(0) = ho, u(x,0) = uo(x), 0<x < ho,

@ Q: the role of d; in the spreading of u? We can revisit the free boundary problems
in the existing literature.
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The revisit: two weakly competitive species

A modeling perspective for the free boundary condition in Guo-W. (2012):
@ Consider

ut:d1uxx+r1u(1—u—hv)—%uw, XeQ, t>0,

Vi = GhVix + rav(1 — v — ku) — %vw, xeQ, t>0,

w,:rww(1f£)f@uwf@vw, xeQ, t>0,
Kw e 5

du=0,v=0, xecoQ, t>0,

where up > 0 (resp., vo > 0) and wy > 0 are spatial segregated.

@ Then the limiting problem has the free boundary condition:

01 b3 o bz

h,(t) = —WUx(h(t), t) — m%((h(t), t),

t>0,

where w obeys the logistic equation.
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@ Q:is there any difference between the cases d, > 0 and d, = 0?
@ We consider the interaction between three weakly competing species u; (i = 1,2, 3)
and one strongly competing species w:

u1 1
oy = d16xxu1 + U <1 — 7K > — Uil — a3l Uz — E’W hw,
1

Uz 1
Otz = 020xxlp + N2U2 <1 - ?> — oz lply — azslpls — 72l W,
2

Us 1
OtUs = d30xxUs + r3U3 (1 - 7) — aatlslh — agalislz — —3UsW,
3

w 1
NW = dwOxxW + ryw (1 - 7) - (B1y1us + Peyzuz + Paysus) w,
w

@ The parameter values are all fixed except for dy and e:

adi = 0.75, b = 0.1, d; = 1.0, =025 r=0.35 r=0.3, r, =0.25,
Ki=11,K>=0.9, K3 =1.0, K» = 1.0, a12 = 0.15, ay3 = 0.25, az1 = 0.2,
a3 =01, 031 =0.1,032 =02,y =72=7=1.0, 6 =08, 52 =0.75, 53 =0.7,

@ The coexistence state: (u7, uz, u3) ~ (0.084760,0.732021, 0.483733).
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Ficure 1. Snapshots of a solution behavior when d,, = 0, = =
0.00001 and L = 25. The blue, green, red and black curves respec-
tively mean wy, ug, us and w, respectively.
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Ficurg 2. Snapshots of a solution behavior when d,, = 0.1, ¢ =
0.00001 and L = 25. The colors of curves indicate the same as the
ones in Figure 1.
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Ficurg 3. Snapshots of a solution behavior when d,, = 0.7, ¢ =
0.00001 and L = 25. The colors of curves indicate the same as the
ones in Figure 1.
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Numerical results

c
01 - T T T
e=0.5 —
=01 —+
e=0.01 —
£=0.001 7
=0.0001
0
002 | \\\ 4
0048 |- 5 4
-
008 | “\\\\ 4
S
-0.08 \
o1 b
‘ : ‘ : d,
o 0z 04 06 08 1

Ficure 4. Relations between the dittusivity d,, and the traveling
wave velocity ¢ for each = value are shown. The horizontal axis is
d,, and the vertical one is c.
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Summary

@ We consider the spatial segregation limit for two types of
competition-diffusion systems and derive two free boundary problems.

@ We revisit the free boundary problems in the literature and study the role
of diffusion.

@ We also present numerical results that demonstrate the complexity of
the role played by diffusion rates.

@ The interpretation of the parameter in the free boundary condition may
be helpful for its application to real-world data (Izuhara-Monobe-W.
2021).



Summary
oce

Thank you for your attention
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"Segregation pattern in a reaction-diffusion model of asymmetric cell division"

Yoshihisa Morita (Ryukoku University, Japan)

We deal with a mathematical model describing polarity in the asymmetric cell division of C. elegans embryo. In the
maintenance phase of asymmet- ric cell division anterior PAR protein (aPAR) and posterior PAR protein (pPAR) are
exclusively formed and a segregation pattern is created for the polarizations of aPAR and pPAR. Seirin-Lee and Shibata
(2015) proposed a 4-component reaction-diffusion system with mass conservation as a model to describe the segregation
pattern. Later, some gradient-like dynamics and variational structure in a slightly modied model system were revealed
by Morita and Serin-Lee (2021). In this talk we review their work and report a recent progress.
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1. Introduction

In the asymmetric cell division of C. elegans embryo, anterior PAR
protein (aPAR) and posterior PAR protein (pPAR) are exclusively formed in
an asymmetrical manner, and in the maintenance phase a segregation
pattern is created for the polarizations of aPAR and pPAR.

PAR polarity of C. Elegans embryo cell

A Initial Phase Patterning Phase Maintenance Phase

sperm entry
=) \/éﬂ AL\ P

> Symmetry AP-axis
/ breaking

B aPAR SAR point
p
LLLEERLY # Asymmetric cell division

We remark that PAR proteins are mostly upstream regulators that
control the downstream proteins and a series of the processes of
asymmetric cell division.



A model for asymmetric cell division (by Seirin-Lee — Shibata 2015)

Membrane

_ _‘a_ o _‘e_ | DmVQPm — Forf P + FonPe
lx oP. = DCV2PC —+ Foffpm — F,, P,

O A, = EmVQAm — FoffAm + FonAC
cytosol e OrAc = DV Ac+ FoppAm — FonAc

Those off-rate functions depend on A,, and P, respectively

K1A2 o K1P2
FO — m , FO — _—m7
=T KAz EAR =)
Fon =7, v



Numerical simulations for the model demonstrating the segregation pattern

A Neumann AR B Periodic PPAR (1)
boundary conditions aPAR (v) boundary conditions aPAR (v)
g 20 T T T T T T T w 2_0 T T T T T T T
c
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£ T
£ 1.0 € 107
3 3
5 &
O 0_0 L L L L L L L L L O O.O Il Il Il L L L L L L
00 02 04 06 08 10 12 14 16 1.8 20 00 02 04 06 08 10 1.2 14 16 1.8 20

X X



In Seirin-Lee — Shibata 2015 they also consider a 2-component system which
is formally reduced from the 4-component system.

Although the two-component system is interesting by itself, the reduction
seems to be not so mathematically reasonable.

We take a different approach to the 4-component system (M-Seirin-Lee 2021).

Assuming )
KA, K4 K4
Fog(A,) = a+ —a+—A2 + O(A% Na+—A?n,
r(Am) K+ A2 ()
— EPmQ E 2 4 — E 2
1(Fm) K + P> K (Fm) K
By putting
k :Kl/K y T :(K/Fl)k,
and

U :— Pm, V1 - — Pc, Ug — Am, Vo (— Ac, dl = Dm, D1 = DC,

do:=7D,,, Dy:=7D., v =7, Y2:=T7, a=0Q, Q:=T«a



we consider the modified system:

Opu; = d1Auy — (g + kug)m + Y101,
Orv1 = D1Avy + (a1 + ku%)ul — Y101,
(4system)

TatUQ = dgAUg — (CVQ + ku%)UQ -+ Y2U2,

7009 = DoAvy + (g + ku?)ug — o2,

We deal with this system in a bounded domain 2 C RY with the Neumann
boundary condition and initial data:

ui(x,0) =uio(z) >0, wus(x,0) =1wuszo(x) >0, B
{?}1(33,0) =v10(x) >0, wvo(x,0) =wva0(x) >0 (x € Q),

u;o vi0(t=1,2) are L> and notidentically zero.



2. Basic results for the model equations

Standing assumption: di < Dy and do < Do

Lemma (M--Seirin-Lee)

The system has a unique classical solution (u1(z,1), u2(x,t),v1(x,t),v2(x,t))
satisfying

up(x,t),us(x, t),v1(z,t), va(x,t) >0 (z € Q)
and it exists time globalif 1 < N < 3.

The system has the property:

Mass conservation:

/ (u1(zx,t) + vi(x,t))dx = constant, / (ug(x,t) + vo(x,t))dx = constant.
Q Q
because of

d

dt Jo

(ur(z,t) +vi(zx,t))dx =0, % /Q(uQ(:L',t) + va(x,t))dx = 0.



Put

ui) +(v1),  mog = (uz) + (va),
1
() := @ /Q dx

By the change of variables

mia 2=<

z1 = (d1/D1)ug + v, zo = (d2/D2)ug + vo

we convert the system to

8tu1 = dlAul — (061 + ku%)ul — (’yldl/Dl)ul —+ Y1%1,
(1 — dl/Dl)E)tul + (9tz1 = DlAzl,
Tat’u,g = dQA’UJQ — (CYQ -+ ku%)ug — (’Yldg/DQ)’U,Q + Y222,

T7(1 — do/D2)0sug + 7020 = DaAzs.




Lyapunov function

d d a1 + v1d1/D
E(u, z) ::/§2[?1|Vu1|2—|—72|Vu2|2—|— = 7; 1/ 1u%

o + y2da /D k 0 0
+— 7; 2/ 2u§—|—§u%u§+§1z%—l—§2z§ dzx,

where w= (ui,us), z=(21,2).  0i: i (i =1,2)

" 1-4d;/D;

Indeed, we can check

d
Eg(u(Wt% Z('? t))

—_ — / [(8tu1)2 + 7'((9{&2)2 —+ 91D1‘VZ1‘2 —+ (92/7)D2‘VZQ‘2]dQZ S 0
Q



3. Stationary problem
diAuy — (o + kus)uy — (vidy/D1)us +mz1 =0, Az =0,
deAuy — (g + kuf)uz — (y2da/Da)ug + 7222 =0, Az =0,

with m; = (1 —d;/D){wi) + () (i=1,2).

These equations turn to be

diAuy — (B1 + kuz)us +y1{m1 — (1 — d1/D1){u1)} =0,

(SE) doAus — (B2 + kU%)’UQ +y2{ma — (1 — d2/D2)(uz)} = 0.

h
nere Bi = a; + v:d;/ D; (2=1,2)

We note that the corresponding to a solution (u7,u3) to (SE)

(u1, 27, g, 25) = (u1, M1 — (1 —di/D1)(uy), uy, ma — (1 —da/D2){u3))

gives an equilibrium solution to (4system).



Variational characterization

Define
Es(u) :z/Q {%\Vmﬁ + %\Vug\Q + %u% + %u% + gu%ug} dx
a0 jlc‘;f/‘Dl) {m1 — (1= di/D1)(u1)}”
T 2(1 32522)1%) {ma — (1 - d2/D2)<U2>}2 :

It is easy to see that (SE) with the Neumann boundary condition is the
Euler-Lagrange equation of &, .

(Q) A local minimizer is stable in the 4-component system?



Lemma (stability) M--Serin-Lee

Let u* be a local minimizer of £ and let z* = (27, 23) be defined as

i
Then given € > 0, there exists 6 > 0 such that
I(u(-,0), 2(-,0)) — (u", 2%)|[gr <0
implies
I(u( 1), 2(-, 1) = (", 2*) g2 < Ce (¢ >0),
for a constant C' > 0.
In the view of Lemma (stability), in order to prove the existence of

stable nonconstant equilibrium solutions of (4system), it suffices to
show the existence of a nonconstant minimizer of &, .



Key lemma (Latos-Suzuki)

Let u* = (u},u3) be a local minimizer of £,(u) (u € H'(Q)?).
Then there exists an €1 > 0 such that for any € € (0,e1/4] we can take
01 = 01(¢) > 0 so that |[u — u*||g1 < € holds if

Es(u) — Es(u™) < o1 with ||lu—u"||g <eq.

Lemma (stability) is proved by using this lemma.

14



4. Spectral comparison

Around an equilibrium solution (u7, v}, u5,v5), we consider the
linearized operator

o1 —d1Apy + (a1 + k(ub)?)d1 + 2k(utul)dy — y11h1
£ o] | ~P1A% = (o + k(u5)?)dr — 2k (ufu3)de + Y1t
P2 | —daA¢y + (01 + k(u])?) 2 + 2k(uius)dr — Y2102
V2 —DyAgs — (a1 + k(uf)?) 2 — 2k(ujud)d1 + y212

Dom(L) ={(¢1, Y1, d2,92)" € H* (4 RY) :
0¢p;/0n = 0Y;/On =0 on 9N, (d;)+ (Y;) =0 (i=1,2)}

r (901> o <—d1A901 + (81 + k(u3)?)pr + 2k(uius)ps + 71 (1 — dl/D1)<901>)
F\p2) T \—daAps + (B + k(u})?)p2 + 2k(uiub) o1 + 72(1 — d2/D2)(pa)

Dom(L1) ={(d1,¢2)" € H*(R?) :
0p;/On =0 on 00 (i=1,2)}



Welet {A;}j=12,.and {vj};=12, .. be sets of eigenvalues of
L and L; respectively.

We have the following spectral comparison result:

Theorem (M-Oshita)
If A;#0 or v; #0,then Ajv; >0, N[ <|vj] holds.

Moreover, if A; =0 | then ¥; =0 holds, and vice versa.

This implies that the numbers of unstable eigenvalues to £ and £
coincide.

Proof can be done by modifying the arguments in M (2012).

(cf. Bates-Fife (1990), Ohinishi-Nishiura (1998))



4. Profile of stable solutions
We first introduce previous results.

Lemma (minimizer of the reduced problem)

There is a minimizer u* = (uj, u3) of & satisfying

u; () >0 (x€Q), i=1,2.

Theorem (M-S.-Lee)

Let Q ¢ RY (1 < N < 3) be a cylindrical domain as Q = {x = (x1,2) €
(0,L) x D}, where D is a bounded domain of RY¥~! with smooth boundary.
For the diffusion coefficients assume d; < D; (i = 1,2). Then there are positive
numbers @, d and 7 such that for

o <a, di<d, di/a; <7 (i=1,2),

the system (4system) in 2 with N.B.C possesses a stable nonconstant equilib-
rium solution.



Sketch of Proof: For simplicity assume €2 = (0, L).

Assume
di < Dy, fi<<l (i=1,2), L>uw, L—{>ws.
Define (Bi = @i +idi/ Di, s0 ;= [5;)
cosh(x/wl))
1< ) ,LL1( ) COSh@/Wl) Ui(x;0.75)
Us(x;0.75)
cosh((L — x)/w2)> -
. — 1 . 1.4- ‘
Ua(x;£) := p2(f) < cosh((L — £)/ws) 1.2] (/
" iy - ‘
H1 '_%{g_wl tanh(¢/w1)} + B1/71 o
Iu2(£) . mo 075

T /Do rp g tanh((L — £)/w)} + B/
18



Define

Then

d1(U1)ze — (1 + k(U2)*)Uy +v1{m1 — (1 — dv/D1)(Us)}

d2(U2)aa — (B2 + k(U1)*)Usz + v2{m2 — (1 — d2/D2)(Us)}

~

~

and

~ ~

gs(Ula UZ)

L

— Ui (0<z <o),
7)== (¢ <z <L),
. o (0<xz<Y),
2(7) = Us(w;l) ({ <z <L)

{O 0<x<?),

1B U<z <L),

{%& (0<z<d),

0 ({<x<L).

_ /(f (%((Ul)m)Q - %Uf) dx + /; (%((Ug)gc)2 + %U§) dx

"3

(1 —dl/Dl

1—d1/D1 ¢ ’ ’)/2L 1—d2/D2
) (ml L /0 Ul(x)dx) T2 =da/ D) <m2 I




If
o <1, di<l, difo; <1 (i=1,2),

(inthe sequel 3, <1 (1=1,2)),
then for any constant solution (w1, u2)

58(017 [j2> < gs(ﬂ17ﬂ2)
holds.

This implies the existence of a stable nonconstant equilibrium solution.

In order to estimate the energy clearly, take the following scaling:
(S)  «; = edy, d; =e'°d;,, 0<6<1 (i=1,2),

Then

~ ~

Bi = eBi(e),  Bile) :=a; +e°divi/D; (i=1,2)



The equations are written as

~

e2dy(w1)zw — (Bi(e) + (k/e)ud)ur + (v1/e){m1 — (1 — &' ™°dy /Dy){w1)} = 0,

~

%da(u2)we — (B1(e) + (k/e)ud)uz + (y2/e){ma — (1 — £'°da/D3){(uz)} = 0.

and
1 e%d e%d Bi(e By (e) k
gé’s(u) ::/Q {Tll(ul)xP + TZ‘('U/Q);BP + 12< )u% - 22 u% - 2—€u%u§ dx
1L 146 7 2
_ mi1— (1 —e7°d/Dq){u
2¢(1 — el*9dy /D) { 1= /Di)t 1>}
Va2 L 146 7 2
_ mo — (1 — e 7%/ Do) (u .
28(1 — €1+5d2/D2) { ’ ( 2/ 2)< 2>}



In view of

Lm1

_ 5/2 _ 5/2

we have
1 A 1 (Lml)Q&l 1 (Lm2)2642 5/2
g(‘:S(Ul,UQ) _ 5 E T 2 L_g —1_0(6 )

> (/a4 ma/as)? + O

Lm1 \/6&1

for ¢/ =10" .= — =
miy/ Q1 + Mo/ Qg




1 1.~ -
Since ggs(u‘i,u‘;) < ESS<U1,U2) for the minimizer (ui,u3)

we have an upper estimate

1 L
—&s(uf, us) < 5 (m1+y/ a1 +ma/ & —|—O 5/2
3

(M- Seirin-Lee)
Moreover, we obtain

Lemma (M-Oshita)

Let u} = (uj_,u5_) be the minimizer of & with (S). Then

1
\/7m1—|—\/7m2 — p1(e Sg \/7m1+\/7m2 + pa(e

where p1(e) = O(¢'/?) and pa(g) = O(9/2).



Theorem (M-Oshita)

There exists an equilibrium solution ©* = (uj, u5) satisfying

(u3)z(usy)z <0 0<zxz <L)

1 L
\/7m1+\/7m2 —p1(e) < - 5\/77”14‘\/77”2 + p2(€)

m

— S

1.2+

0.8

0.6+

0.4
0.2

A 4
o

24



(Future problems)

(i) Arigorous proof to show that the equilibrium solutions with monotone
profile is a minimizer.

(i) The existence of a stable/unstable solution with multi layers;

Although we can prove that solutions obtained by reflection of the
monotone one is unstable, it remains to verify if there exists a stable
solution with multi-layers or not.

(iii) The existence of a stable solution with a transition layer in a higher-
dimensional domain;

(iv) Different parameter regime allowing the segregation pattern should be
examined.

(v) Free boundary problem in the singular limit € — 0.



Thank you for sharing your time!

In memory of Professor Masayasu Mimura for his great
achievements in the theory of pattern formation arising in
reaction-diffusion systems
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"Speed-up of traveling waves by negative chemotaxis"

Quentin Griette (Université Le Havre Normandie, France)

We consider the traveling wave speed for Fisher-KPP (FKPP) fronts under the influence of chemotaxis and provide
an almost complete picture of its asymptotic dependence on parameters representing the strength and length-scale of
chemotaxis.

Our study is based on the convergence to the porous medium FKPP traveling wave and a hyperbolic FKPP-Keller-
Segel traveling wave in certain asymptotic regimes. In this way, it clarifies the relationship between three equations
that have each garnered intense interest on their own. Our proofs involve a variety of techniques ranging from entropy
methods and decay of oscillations estimates to a general description of the qualitative behavior to the hyperbolic FKPP-
Keller-Segel equation. For this latter equation, we, as a part of our limiting arguments, establish an explicit lower
bound on the minimal traveling wave speed and provide a new construction of traveling waves that extends the known
existence range to all parameter values.

This is a joint work with Chris Henderson and Olga Turanova.



Traveling waves in repulsive Keller-Segel models

Quentin Griette (Université Le Havre Normandie)

quentin.grietteQuniv-lehavre.fr

ICMMAZ2023: "Reaction-diffusion systems: from the past to the future”
in memory of Prof. Masayasu Mimura

November 2nd, 2023

Quentin Griette (LMAH) Traveling waves in Keller-Segel models


mailto:quentin.griette@univ-lehavre.fr

PART I:
The hyperbolic-elliptic model

joint works with Xiaoming Fu, Pierre Magal, Min Zhao.

raveling waves in Keller-Segel models



18.52 pm

! Jennifer Pasquier et al. “Different Modalities of Intercellular Membrane Exchanges Mediate Cell-to-cell
P-glycoprotein Transfers in MCF-7 Breast Cancer Cells”. J. Biol. Chem. 287.10 (2012), pp. 7374-7387.
DOI: 10.1074/jbc.M111.312157.
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https://doi.org/10.1074/jbc.M111.312157

The cell-cell repulsion model

Ot — XV - (uVP) = u(l — u)7
P — 62AP = u,
v-VP =0,

2Xijaoming Fu, Quentin Griette, and Pierre Magal. “A cell-cell repulsion model on a hyperbolic
Keller-Segel equation”. J. Math. Biol. 80.7 (2020), pp. 2257-2300. DOI: 10.1007/s00285-020-01495-w.

Quentin Griette (LMAH) Traveling waves in Keller-Segel models
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Related models

@ The Patlak-Keller-Segel equation modeling chemotaxis (Patlak 1953, Keller and
Segel 1970)

ur = kAu — xV - (uVc)
ece = nlAc+ Bn— ac,

see also Calvez and Corrias 2008, Desvillettes et al 2019.

@ The porous medium equation with KPP source

[ u =V - (uVu)+ u(l —u) ]

see de Pablo and Vazquez 1991, Vazquez 2007.

@ in 2006, Armstrong, Painter and Sherratt proposed a model for cell-cell adhesion
modeled by a nonlocal gradient.

[ Uy = U — (UK (u))x, ]

where K(u) —ch g(u(x 4+ x0))w(xo0)dxo.

@ A full model was proposed by Ducrot et al (2011) with a porous medium
equation with contact inhibition.

Quentin Griette (LMAH) Traveling waves in Keller-Segel models



Two-species model

Oeuy — x1V - (11VP) = uy(n — apur — anawn),
Oetr — X2V - (12VP) = uz(r2 — ax1un — anatn),
P —?AP = uj + uy,

v-VP =0,

Quentin Griette (LMAH) Traveling waves in Keller-Segel models



Preservation of segregation when y; = x»

:

—L H(to,o;xo) L

Quentin Griette (LMAH) Traveling waves in Keller-Segel models



Monolayer cell experiment in the Petri dish

sparsely seeded initial condition

(a) (b) (c)
6,
4[t=0 I
2 LN s
N
1 \\\ iy ! B
ot L
a1
(a) (b) (c)

Quentin Griette (LMAH) Traveling waves in Keller-Segel models



The one-dimensional model: motivation

Oru(t,x) — xOx(u(t,x)0xp(t,x)) =u(l —u), xeR,t>0
p(t, x) — 020 p(t, x) = u(t, x), x€e€Rt>0
u(t =0,x) = up(x), x € R.

Wound healing experiments

3James E. N. Jonkman et al. “An introduction to the wound healing assay using live-cell microscopy”.
Cell Adhesion & Migration 8.5 (2014). PMID: 25482647, pp. 440-451. DOI: 10.4161/cam.36224.

Quentin Griette (LMAH) Traveling waves in Keller-Segel models


https://doi.org/10.4161/cam.36224

The one-dimensional one-species model

We focus on the one-dimensional model

Oru(t, x) — xOx(u(t,x)0xp(t,x)) =u(l —u), xR, t>0
u(t =0,x) = up(x), x € R.

As before p is determined by the following equation
p(t,x) — 2dup(t, x) = u(t, x).

Equivalently,

e = (o )(ex) = [ pbulex =)y, o) = 5oe
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Solution integrated along the characteristics

We transform the original model by using the characteristic curves:

{atu(t,x)—Xﬁxu(t,x)axp(t,x): u( ) , xERt>0

p(t,x) = (px u)(t,x)

Ix] -
where p(x) := 5=~ =, is split in two equations: the equation of the characteristic

curves
{ 11(t, x) = —x(px * u)(t (£, X)), "
N =0,x) = x,
and the local dynamics on a characteristic
[ %ﬂ(t» x) = (t, x) (L + X(p* u)(£, N(t, x)) = (1 + %) &(t, ), (2)

where i(t,x) = h(t,1(t,x)) and { = 2. (1)~(2) define a SOLUTION INTEGRATED
ALONG THE CHARACTERISTICS.
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The Cauchy problem

Here L} is the L' space for the measure Je~"*ldx.

Theorem (Solution integrated along the characteristics)
Let up € L°(R), up(x) > 0. There exists 7*(ug) € (0, +0o0] such that
Q For each 7 € [0,7), there is a unique u(t,x) € C°([0, 7], L}(R)) which is a
solution integrated along the characteristics and satisfies
u(t =0,x) = up(x).
@ For each t > 0 we have u(t,-) € L~(R),

© The map t — Tiup := u(t,-) is a semigroup which is continuous for the
L}(R) topology,

@ Foreach t >0, the map uy € L°(R) — T.up = u(t,-) is continuous for
the L}, topology

In addition: preservation of monotony, continuity and differentiability (as well as
superior smoothness) of the initial data.
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Discontinuous traveling waves

Theorem (Existence of a sharp traveling wave)

Assume 0 < X < X. There exists a traveling wave traveling at speed

ce (;&, %) U satisfies U(x) =0 for all x > 0, U(0™) > 2@(. Moreover U

is strictly decreasing and differentiable on (—o0, 0] and a classical solution to

—cU' — x(UP") = U(1 - V),

where P = (U x p).

In addition: for solutions of the Cauchy problem with compactly supported
initial data, convergence speed of the level sets to the separatric, estimate on
the jump size. Non-existence of sharp continuous traveling waves.

#Xiaoming Fu, Quentin Griette, and Pierre Magal. “Sharp discontinuous traveling waves in a hyperbolic
Keller-Segel equation”. Mathematical Models and Methods in Applied Sciences (2021). to appear. DOI:
10.1142/50218202521500214.
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Propagation starting from initially square-like boundary

Initial condition ug(x) =

(x — x0)?

(L + Xo)

2 1[7L,x0](X), L =20, xp = —15.
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Dependency on the initial steepness
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Position of the level sets and empirical speed
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Formation of a discontinuity

Theorem (Exponential convergence of the level sets)

Let uy € CO(R), up(x) > 0 be supported in (—o0,0), and assume that the
behavior of ug(x) near x = 0 is polynomial:

uo(x) = vIx|%,

for some v > 0 and o > 1. Let N*(t) :=I(t,0) be the characteristic starting
from x = 0 and &(t, ) := sup{x € R|u(t,x) = B} be the level set at level (3.

Then for each 3 € (0, m) we have

M (t) — (g) 7 e et < (¢, B) < M*(¢),

where n :=1 — lﬂc% € (0,1).

Quentin Griette (LMAH) Traveling waves in Keller-Segel models



A cartoon for the formation of the discontinuity

£(t1, B) h*(t1) £(t2, )  h*(t2)
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Divergence of characteristics

We quantify the divergence speed of characteristics near the separatrix. We
have, for x < 0,

% (N(£,0;0) = (£, 0:x)) < —x(px + u)(£, N(£, 0; 0)) + x(px * u)(£, (¢, 0; %))

= )(/ (Px(l'l(t7 0; x) — z) — px(MN(t,0;0) — z)) u(t, z)dz
Rn(:,o;x)
= X/ (Px(ﬂ(l‘7 0; x) — z) — px(M(t,0;0) — z))u(t7 z)dz

n(t,0:0)
+ X/ (px(ﬂ(t,o; x) — z) — px(N(t,0;0) — z)) u(t, z)dz

(t,0:x)
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Divergence of characteristics

We quantify the divergence speed of characteristics near the separatrix. We
have, for x < 0,

% (n(tv O;O) - n(t’ OFX)) < *X(px * ”)(tv n(t’O; 0)) + X(px * u)(ta n(t,O;X))

= X/ (px(l'l(t, 0; x) — z) — px(M(t,0;0) — z)) u(t,z)dz
R

n(t,0;x)
:X/ (px(l'l(t,O;x)72)7px(ﬂ(t,0;0)fz))u(t,z)dz

<0

n(t,0;0)
+ x/ (pe(N(£,0:x) = 2) = pe(N(£,0;0) — 2)) u(t, 2)dz

n(t,0;x)

<1/02

Lzl sign(z) — 1zl

where p(z) = s-e” 7, pe(z) = —252 e~ = . Therefore
Mn(t,0;0) > N(t,0;x) > M(t,0;0) + xetst

where € 1= sup,,<q scqo,, U(5, (s, 0; 2)).
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Dynamics on the characteristics

On each characteristic, u(t, MN(t,0; x)) satisfies

%u(t, N(t,0x)) = u(t, N(£,0;x)) (1 + R(p+ u) (£,1M(£,0:x)) = (1+ R)u(t, N(£,0;x)))
> u(t, N(t, 0; x))

if u(t,MN(t,0;x)) is sufficiently small. Therefore

u(t,N(t,0;x)) > up(x)e’.
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Heuristic computation

Assume x is close to M(t,0;0) so that u(t,x) <e.
In the worst case scenario MN(t,0; x) ~ M(t,0;0) + xeX** so that

n(o, t; x) =~ —(N(t,0;0) — x)e X<t
Next by using the dynamics on the characteristics
u(t,x) = u(t,N(t,0;1(0, t; x))) > up(M(0, t; x))e
~ up( — (M(t,0;0) — x)e *t)et,
therefore if ug(z) is polynomial near 0: ug(z) > 7|z|%,

u(t, x) 2 Y(N(£,0;0) — x)* -5
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Preservation of regularity

Let up € L°(R) and u(t, x) be an integrated solution.
Q if0 < up(x) <1, then 0 < u(t,x) < 1. In particular 7*(ug) = +00.
Q if up(x) is continuous, then u € C°([0,7] x R) for all T < 7*(up).

Q if up(x) € CY(R), then u € CL([0,7] x R) for all T < 7*(up). In this case
u(t, x) is a classical solution of the hyperbolic problem.

@ if ug(x) is monotone, then u(t, x) has the same monotony for all
0<t< T*(Uo).

The first property comes from an ad hoc argument. Properties 2 - 4 are shown
thanks to the following formula

up(MN(0, t; x)) exp (fot 1+ xp(l,N(1¢t; X))d/)
14+ (1 + R)uo(N(0, t; x)) fot exp (fol 1+ %p(o,N(o, t; x))da) d/

u(t,x) =

which requires the a priori definition of I and p.
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Explicit estimate of the jump size

Theorem (Estimate of the jump)

Let ug € L°(R) be a non-increasing profile supported in (—oco, 0] satisfying

u(—o0) <1, u(07) > 0.

Then:
li fu(t, M*(t)) > 2
iminf u(t,11°(8)) > 5.
I|m|nfd—l'l *(t) > UXA,
t—+oo dt 2+ X

where M*(t) = T(t,0) and X = %.

Note that this estimate is better than the one provided by the “convergence of
the level sets” theorem. Indeed

2 1 1 1
5 = = > - = = —.
2+ X 1+3 1+x 7 1+ x+oax
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Non-existence of smooth sharp waves

Our last result is the non-existence of smooth sharp traveling waves. It confirms
that discontinuous traveling waves are the “natural” asymptotic shape of
compactly supported initial conditions.

Theorem (Non-existence of sharp smooth waves)

Let U > 0 be a traveling wave and assume that U is continuous. Then
U € CY(R), U is strictly positive and

—x(px * U)(x) < ¢ for all x € R.
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Existence of non-sharp smooth traveling waves waves

This last result is a recent work with Pierre Magal and Min Zhaos.

Theorem (Existence of a continuous traveling wave)

We assume that
€ >2y/?R (1 +X).

There exists a traveling wave u(t,x) = U(x — ct) with a continuous profile
x — U(x) is continuously differentiable and strictly decreasing, and

lim U(x) =1, and xﬂToo U(x) =0, (3)

X—>—00
and satisfies traveling wave problem
—cU —x(UP)Y =U(1 - U), onR, (4)

where

P—0%P" = U, onR. (5)

SQuentin Griette, Pierre Magal, and Min Zhao. Traveling waves with continuous profile for hyperbolic
Keller-Segel equation. 2022.
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Summary: Traveling waves, what is known?

Recall ¥ = l.
0'
@ Suppose 0 < { < k (with ¥ ~ 1.045). For

A

ox aX
2+% 2

@ For any ¢ > ceont := 2¢y/0?% (1 + %) > harp there exists a continuous
traveling wave (no restriction on ¥).

CcE

— (T ) e ; ;
=1 (Charps Ceharp): €Xistence of discontinuous waves

0 Cs_harp tharp Ccont
L' 2078 7 v 0725 S /v S S v VS S SV S SV SV A S SV S SV SV
Sharp TW Smooth TW

So there is a gap between the two “zones of existence".

Uniqueness of traveling waves and non-existence of waves: open questions.
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PART II:

Speed-up of traveling waves by
negative chemotaxis

joint work with Chris Henderson and Olga Turanovas

8Quentin Griette, Christopher Henderson, and Olga Turanova. “Speed-up of traveling waves by negative
chemotaxis”. J. Funct. Anal. 285.10 (2023), Paper No. 110115, 67. por: 10.1016/j.jfa.2023.110115.
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The repulsive chemotaxis model

We aim at studying the model:

Ut +X(VXU)X = Uxx + U(]- - U),
AV =U—V,

and more specifically the traveling waves

—cUx + x(ViU)x = U + U(1 = U),
—dV=U-V,

with the conditions :
U(—) =1, U(+) =0, V e L*(R).

x will be negative: —y > 0.
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Known results

— 2Uy + x(ViU)x = Ugx + U(1 = U),
—dVe =U—V,

The speed in the absence of advection is cxpp = 2.

In is known? that when —x > 0, the minimal speed ¢, 4 satisfies C, 4 > 2 (no
slow down by repulsive chemotaxis). More precisely, it has been proved that :
@ when d, =X < 1then ¢, g =2
Q@ when 1<K —x < dthenc, 4~ % (so there is a speed-up)
We prove thats
Q@ when d < —x then €, 4 £ Cpm,cv/—X (—Xx may remain finite)
@ when d < —x then ¢ g £ om.v/—X

"Christopher Henderson. “Slow and fast minimal speed traveling waves of the FKPP equation with
chemotaxis”. J. Math. Pures Appl. (9) 167 (2022), pp. 175-203. por: 10.1016/j.matpur.2022.09.004.
8Griette, Henderson, and Turanova, “Speed-up of traveling waves by negative chemotaxis”.
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The rescaling

— U + x(ViU)y = U + U(1 = U),
—dVx = U—V,

We introduce a rescaling of the unknown functions

u(x) = U(xv=x),  v(x) = V(xv/=x),
so the new functions solve the equation

c 1

— ——Uy — (WU)x = — U + u(l — u),
=T (W= — )
d

— — V= UuU—V,

We look at —x and d as varying parameters which may go to +oc or 0.
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Limit equations: Porous medium

1
— ¢ty — (Vxl)x = —Uxx + u(1l — u),
—X

— UV = U —V,

i —_c — d
with cf\/jxand v=

—x "

~~ First case: porous medium medium limit. Up to extraction,
1
v —0, —x = =, with € € [0, +00).
€

The limit equation is local (porous medium-type) and the minimal speed is

known:
1 . 1
C;mez{ﬁ+\/25, |f5<?
’ 2\/57 Iffz 5
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Limit equations: Hyperbolic repulsive Keller-Segel

1
— cuy — (Vxt)x = — g + u(1l — u),

— UV = U — V,

i = _¢ = d
with ¢ = Hand v=—=

~~ Second case: hyperbolic limit. Up to extraction,

v — positive constant, v, —x — 0.

The limit equation is non-local (hyperbolic type), we some properties but the

minimal speed is unknown.

We derive a universal positive lower bound for the speed of the hyperbolic

problem, among other things.
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Results. I: the porous medium limit

¢y, is the minimal speed for the rescaled equation; c;,, . is the minimal speed

of the porous medium limit.

Fix any ¢ > 0.

(i) The minimal speeds have the asymptotics:

* *

I|m1|nf C = G
—x—z,v—0

(i) Consider any sequence (x, — X,Vn — V) and traveling wave solutions
(¢ny Un, Vi) to the rescaled equation. If limsup ¢, < +o0o, then up to
shifting (up, vy) so that

min u,(x) = uy(0) =6 € (0,1),

x<0
there exists a (c, u) solution to the porour medium KPP equation and a
subsequence ny with

o s gl
Cn, — C, Up, — U in L., and v, — v in Hj,.
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Results. lla: hyperbolic waves, weak notion

We developed a new weak notion of hyperbolic traveling waves to deal with
the limit of the rescaled equation in a natural way.

—(c+vx)ux—u<1+v_u—u),
v

— UV = U —V,

(6)

Given ¢ >0, u € L*(R) and v € W?>°(R). We denote
Z={x: c+ w(x)=0}

We say that (c, u, v) is a traveling wave if v solves the second equation in (6)
on R, ue CL_(Z°) and solves (6) on Z¢, and we have

loc
u(1+vu—u>—0
14

on Int(2).
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Results. llb: hyperbolic waves, regularity of weak solutions

The equation allows us to gain some regularity on the weak solutions.

Proposition

Let (c,u,v) be a weak hyperbolic traveling wave. Suppose that u is
nonconstant, that is, both {u > 0} and {u < 1} have positive measures. Then
c > 0 and there are only two possibilities:

(i) 2 =w@. In that case, (u,v) is a classical solution of the system.

(i) 2 ={x0} consists of a single point. In that case, u has a single jump
discontinuity at xo, with {u > 0} = (—00, xo). Moreover u € C22(R\{xo})
and u satisfies, at the jump,

_\ v+ v(x)
uo ) = — 1
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Results. llc: hyperbolic waves, estimates on the speed.

It is known that, for any traveling wave (either sharp discontinuous or smooth)

sup —vy(x) < c.
xeR

Fix —x € (=0, +), 0 < vy < vm and Cy > 0. Let (c,u,v) be either a
solution of the rescaled or hyperbolic equation, with ¢ € [0, Cy]. If

v

<
w0 <

then there exists > 0 and C > 0 depending only on —xq, Vm, vm and Cy with

u(x) < Cu(0)e=% for all x > 0.

Fix 0 < vy, < vym. There exists ¢, depending only on v, and vy, such that for
any (c, u, v) solution to the hyperbolic model with v € [vp,, vum], we have

c>c.
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Results. Il: hyperbolic waves, limit speed.

Let vpy,, > 0.
(i) The minimal speeds have the asymptotics:

lim inf c=c(v > 0.
—X—>+00,v—Vpy, 7( hyp)

(i) Consider any sequence (—xn — +00, Vs — Vhyp) and traveling wave
solutions (¢, Up, Vp) to the rescaled equation. If limsup ¢, < +o0o, then up
to shifting (un, v,) so that

. q Vhyp
=uy(0) =0, with0 < < ——
min ts(x) = tn(0) = 8, With 0 < < v+ 1

there exists a solution (c, u, v) to the hyperbolic model and a subsequence
ng with

Cn — C, Up, — u in CH(Z°), and v,, — v in C2(Z9)NW22(R),

where either Z = & or Z = {x}.
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Results Illa: upper bound for the hyperbolic limit

We obtain upper bounds for the minimal speed by constructing the solutions of
the rescaled equation that converge to a specific solution of the hyperbolic and
porous medium models.

Fix vpyp > 0 and any sequence —x, — +00 and v, — vpy,. There exists a
solution (cu, Un, V) Of the rescaled equation and a solution (c, u, v) to the
hyperbolic model such that

(i) Both (up, vs) and (u,v) are decreasing in x,
(ii) u is sharp and has a jump discontinuity at x =0,

(iii) Up to the extraction of a subsequence, we have

lim(cna Up, Vn) = (C7 u, V)

in the topology of R, C1(R\{0}), and W?>°(R) weak-*
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Results Illb: upper bound for the porous medium limit

We show that the hyperbolic discontinuous wave converge as v — 0 to a sharp
(and consequently minimal speed) wave for the porous medium model and use a
double limit to show that the asymptotic minimal speed in the porous medium
case is the expected one.

Consider the decreasing family of sharp discontinuous traveling waves to the
hyperbolic model with parmeter v constructed previously, (c, u,v). Then

im (¢, u) = ( -

Uino C7 u) = \/57 Upm )
where upp, is the unique minimal speed traveling wave to the porous
medium-KPP equation with {upm > 0} = (—00,0).

Then thanks to a careful double limit, we obtain the corollary

We have

1
lim ct o =c o= —.
—x—00,v—0 XV 2y ﬁ
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Thank you !
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The Cauchy problem: Proof of the well-posedness

The proof of the well-posedness is technical. The main steps of the proof are as
follows:

FIRST STEP: We fix Y C R a conull set, ug € L>°(U) and focus on the system
obtained by the change of variables w(t, x) := u(t,MN(t,0; x)) and

p(t,x) := p(t,N(t,0; x)). Here MN(t,s; x) is the flow of the characteristic
equation:

0
51t 5:%) = =xpu (8, N(¢, 5:.%),
M(s,s; x) = x.

Then we can show that (w, p) is a fixed-point of the operator

T
TT[ ]( A)(t ) UO(X)GXP <f0t1+>2f’(/>n(/,0,X))—(1+>2)W(/,x)d/)
U W7p ,X) = .
u Lo f%ef|x7ﬂ(t,0;z)|/au0(z)e‘ﬁ) L-w(l.2)dl

For 7¥(up) sufficiently small this operator acting on the adequate set of
functions over [0,7(up)] is a contraction. 7(up) depends only on ||| £ (s)-
However, we don’t have a semigroup property with this formulation.
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The Cauchy problem: Proof of the well-posedness

SECOND STEP: In order to get a semi-group property, we need to go back to
the original formuation. However, the characteristics may not have
preserved the conull set I/ on which ug is defined. Therefore we "go back"
to up € L°°(R) and apply the construction of Step 1 to a particular choice of
U CR and iy € L2(U) such that ||To| o @) = [|to][L(r)- It can be shown
that the L>-class of u(t, x) is independent of the choice of &/ and .

Now u(t, x) satisfies a semigroup property.

THIRD STEP: By the semigroup property and classical arguments, there exists a
maximal time of existence 7*(up) € (0, +oc], such that

either 7%(ug) = +oo or liminf [[u(t,-)|[ o ®) = +00.
t—7*(ug)~

We actually have a stronger result: that there exists a conull set ¢/ and a real
function ug € L (U) such that the w(t,-) := u(t,M(t,0;-)) is the L™ class of
w(t,-), where (W, p) is the unique fixed point of the original map 77 [ug] for
all 0<7 <7*(up).

The L}7 continuity of ¢t — u(t,-) can be obtained from this property.
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The Cauchy problem: Proof of the well-posedness

FOURTH STEP: The remaining two properties, namely, the continuity of the
map up — u(t,-) for the L>°(R) — L},(R) topologies and the equivalence
between the solutions to the fixed-point problem and the integrated solutions
are done independently by ad-hoc methods. We refer to the paper for details.
This finished the proof of the Theorem.

Now we have in our hands a solution u(t,-) € L>(R) which is uniquely defined
on [0,7*(up)) x R and continuous for the L} (R)-topology. Moreover, the field
p(t, x) is well-defined and continuous for the W:>(R) topology and has
bounded second derivative:

l| P (5 )HLOC(R) < +o00.

The flow of the characteristic curves l(t, s; x) is well-defined and Lipschitz
continuous with respect to x.

Quentin Griette (LMAH) Traveling waves in Keller-Segel models



Sketch of the proof of existence of a sharp traveling wave

The traveling wave equation is:
(—c=xP'(2))U'(2) = U(z)(1 + £P(2) — (1 +X)U(2)),
where P(z) = (U * p)(z). We look for a profile
U(z)=0ifz>0,U(z) >0if z < 0.
To have a discontinuity on the profile the equation must be degenerate therefore
c = —xP'(0).

The equation under consideration is

[ (PO - PE)UE) - U@+ £P@) - 1+ DUE). |

Quentin Griette (LMAH) Traveling waves in Keller-Segel models



Sketch of the proof of existence of a sharp traveling wave

[ X(P'(0) = P'(2)U'(2) = U(2)(1 + XP(2) — (1 + R)U(2)).- ]

We introduce a change of variable:

Then U(t) = U(7(t)) satisfies:

U'(t) =u(t)(1+xP(r(t)) — (1 + R)U(t)),

therefore
1

(1+%) [ oxp (= J 1+ RP((s))ds) !
We look for U as a fixed-point of

Ut) =

| 7)) =uee) |

Quentin Griette (LMAH) Traveling waves in Keller-Segel models



Sketch of the proof of existence of a sharp traveling wave

[ X(P'(0) = P'(2)U'(2) = U(2) (1 + XP(2) — (1 + X)U(2)).- ]

Admissible profiles U are:
@ continuous,
@ valued in [0,1], and lim,_,o- U(z) > ﬁ
@ sharp, i.e. U(z) =0 for all z >0,
@ non-increasing.

It can be shown that this set A of admissible profiles is invariant by 7.
Moreover T is continuous and compact on A for the topology induced by

WUl = sug e —zU(z).
z<

Since A is convex, the Schauder fixed-point theorem concludes that 7 has a
fixed-point on A.

Quentin Griette (LMAH) Traveling waves in Keller-Segel models
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i "A Billiard Problem in Nonlinear Dissipative Systems"

Shin-Ichiro Ei (Hokkaido University, Japan)

The motion of camphor discs in a square domain is considered. Different motions from a usual Billiard problem are
observed such as the existence of a stable limit cycle. This talk is mainly done according to the content of the monograph
by Miyaji, E. and Mimura. The interaction of elliptic camphor discs is also mentioned.



A Billiard Problem in Nonlinear Dissipative Systems

-for the memory of Prof. Masayasu Mimura-

Shin-Ichiro Ei
Hokkaido University
Sapporo, Japan



Short summary of careers of Mimura sensei and |

Mimura sensei I

_ Staffs:
-1973, Kyoto Univ. Tomoeda, Ito, Matano, Kobayashi,
1970-1980, Konan Univ. Nishiura, Ogawa, ...
1980-1993, Hiroshima Univ. ) 1982-1992, Hiroshima Univ.

1993-1998, Tokyo Univ. 1992-2004, Yokohama City Univ.

1998-2004, Hiroshima Univ.
2004-2017, Meiji Univ.
2017- , Musashino Univ., Meiji Univ.

2004-2014, Kyushu Univ.
2014 - , Hokkaido Univ.

Sensei looked very busy,
Tsujikawa, Nakaki, Kan-on, I, bUt enjoyed researCh

Tohma, Kuwamura, ...

Nagayama, lzuhara, ... '\ softball and tennis.
:members related to ReaDiNet . .
Many students in Mimura Lab.

Sorry to other members !



WET) A+ 1985

INn Hiroshima

's Lab.

Mimura
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In seminars

Simply show simple things.
(Simple things should be shown in a simple way)
sometimes

Explain intuitively (and understandably). frequently

What is interesting ? What is the motivation ? absolutely
(What is the salse point ?)

overwhelmed by his active power and outstanding insight



Spiritually mooring



The first paper for me

Spatial Distribution of Rapidly Dispersing
Animals in Heterogeneous Environments

-~ by Nanako Shigesada

1984
1. Introduction

Ecological models incorporating spatial heterogeneity of habitats are of -"\\\\\\
profound dmportance in understanding the movements of organisms and their
effects on the stability of spatial distributions of populations under natural
circumstances. Equations describing the time development of the spatial

<

distribution of a population in a heterogeneous environment fundamentally
involves two terms, dispersal and growth, which are both functions of space.

There have been several distinct approaches to the analysis of such models

The first paper which Mimura sensei gave me !

Related to transient and asymptotic motions of solutions for a RD
with heterogeneous media.

—— The motivation fixed my research direction
PhD in 1987
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Short history of an ongoing joint work

Tomoyuki Miyaji, Shin-Ichiro Ei
Masayasu Mimura

A Billiard Problem in Nonlinear
Dissipative Systems

— Monograph —

August 9, 2021

springer

preface

Classical billiard problem has been extensively studied in the community of math-
ematics. However, this book is concerned with billiard motion of a self-propelling
disk in a nonlinear dissipative system on a rectangular pool. As an example of self-
propelling disk. a camphor disk floating on water vessel is well-known in nonlinear
science. The laboratory experiment demonstrates that. unlike classical billiards, it
has the following properties:

(i) It reflects without collision at the boundary, and

(ii) the angle of reflection is greater than that of incidence. which is totally different

from elastic reflection.

n
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Motion of pulses

Joint works with Mimura sensei for pulse/front dynamlcs

. M. Mimura, K. Sakamoto and S.-I. Ei, Singular perturbation
problems to a combustion equation in very long cylindrical 1 D reﬂec
domains, AMS/IP Studies in Advanced Math. vol. 3(1997), 75-84.

. S.-I. Ei, R. Ikota and M. Mimura, Segregating pattern problem ----------- )7
in competition-diffusion systems, J. Interfaces and Free Boundaries o i
vol. 1(1999), 57-80. T ——a——n

. S.-I. Ei, M. Mimura and M. Nagayama, 2D reflec. 00’
Pulse-pulse interaction in reaction-diffusion systems,

Physica D 165 (2002), 176-198. . Il

. S.-I. Ei, M. Mimura and M. Nagayama, y \ \ \ il lI“ ‘ l l I I
Interacting Spots in reaction diffusion systems, DCDS 14 (2006), 31-62.

. Xinfu Chen, S.-I. Ei and M. Mimura, 25 ” 25
SELF--MOTION OF CAMPHOR DISCS -MODEL AND ANALYSIS-, \
NETWORKS AND HETEROGENEOUS MEDIA Volume 4, Number 1 (2009), 1-18.

f\ Drift bifurcation of

traveling pulse, spot

Pitch-fork type bifurcation
» /& diagram of pulses, spots




Camphor Layer Model(#“ﬂ“’)

 Nagayama et.al.00

u, =DAu—au+F(] x— PI)
y(u)=
P ny(u)|—P ’ F
1
e Mimura et.al.01
{Tgutz EAu+ fu,y)—< >, o
v, = DAv+au—yv, ..M(KoyaIOO)
<> s S =ui-nfa), )=



Experlment for camphor disk

By Kanda (02, Hiroshima Univ.)

L

t=6 t=15

B4 : AREHROBRE? (HENFELEE

\ Camphor disk problem is
A
A
\

T J

Recorded by the video camera
at A and monitored by the
display at B to produce a
movie.

a nice example both from
models and phenomena !

A trajectory of a camphor
disk of an experiment /

\

D> — /4 = 1/(content rate of camphor)




Moving boundary (MB) model for camphor disk

_/aQC Y(w)ndl, Chen, E, Mimura 2009
= Au—u+ f(z, P),

{2

_ fO: T Eﬁca
f(=, P) = { 0, =N,

WS in Lorentz center 20037 First rigorous result
Drift bifurcation was shown by Chen :> for 2D reflec.

MB model which can be rigorously treated.



Interaction of camphor disks

k=k +1 K@? TD—

MB model =
M,, M', > 0= Repulsive interaction —
B M P —
Pl:gl_\/zoe_ahea h=P,—-P ,e:| 2
: M
P,=¢,+—Le e,
2 2 \/Z
) M ' , gl €2
. M, o, o
gl _ VW(QI) \/Z e €, d >>>>>>>> - \8
=4
. M ' B 2
= -VIW () +—Fe e,
\2 o




Special Cases

 On aline NN
Pj :(pjao)a S; :(gjao)
(E. Mimura, Nagayama 02)

 Neuman boundary

R:(p9Q)a S :(gaé:)ag :(pa_Q)a S :(ga_§)9

(Matsumoto 02) v




Dynamics of ODE
R:(p9Q)a S :(gaé:)ag :(pa_Q)a S :(ga_é:)a

>

p=c,

G=¢+

é:_(M1

=

_(Ml

M,

Ner,

S

S

—2a
e q

’ _M277)g9

’ -M )¢ +

a

\p

p=T(a)

(a =) Mimura et.al

Meaning?

difference from usual billiard problem ?

!

Ner



Dynamics In a square region

20—

I "hogen-30. deﬁ"

1

4 Mimura sensei discovered

the stable limit cycle
c.f. Billiard problem

(Generically the region is
/ densely filled by orbits)




Experiment in Hiroshima
by Mimura and Lab. students 2002

1.3 Moving boundary model 3

Fig. 1.1 The experimental facility by Kanda[4]. The experiment was recorded by the video camera
at A and monitored by the display at B to produce a movie.

Fig. 1.2 A trajectory of a camphor disk of an experiment by [4].
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10

Complicated motions of camphor disk

1
[
o
1
w
x O
w
—
o

5 10 15 20
X

Fig. 1.11 Complicated periodic orbits for (1.11) on rectangular domains with k = 1.3(left) and
Fig. 1.9 Trajectories of the center of the disk of moving boundary model on square . Left 0 <r < k= 1.35 (nght).

10°, Right: 9.5 x 10° <r < 10*

1.0

= 0 5 10 15 0.5
(byk=16

0.0

x/kL

~ -0.5

-1.0

1.0 1.5

(€) k=185 k=30

Fig. 1.15 An orbit diagram for (1.11). The horizontal and vertical axes are k and x/kL, respectively.

4. Y. Kanda. Experiments and numerical analyses for motions of a camphor disk(in Japanese). Bachelor thesis, Hiroshima University, 2002.

5. M. Mimura, T. Miyaji, and I. Ohnishi, A billiard problem in nonlinear and nonequilibrium systems, Hiroshima Math. J. 37(2007) 343-384.

6. S. Nakata, Y. Iguchi, S. Ose, M. Kuboyama, T. Ishii, and K. Yoshikawa. Self-rotation of a camphor scraping on water: new insight into the old problem. Langmuir 13 (1997)
4454— 4458.

7. S. Nakata et al.(eds.) Self-organized Motion: Physicochemical Design based on Nonlinear Dynamics, Royal Society of Chemistry, 2019.

8. U. A. Rozikov, An Introduction to Mathematical Billiards, World Scientific, New Jersey, 2019

9. N. J Suematsu and S. Nakata, Evolution of Self-Propelled Objects: From the Viewpoint of Nonlinear Science, Chemistry—A European Journal 24 (2018) 6308—-6324.

10. T. Vicsek et al., Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett. 75 (1995) 1226. 11. T. Vicsek and A. Zafeiris, Collective motion, Phys. Rep.
517 (2012) 71-140



Limiting problem
\ by considering sufficiently large region
94

Tp

a
p=T(a) " P
Assume Discrete time model
|

z
2

p=T(a)

04

/




2 0,=T()=T(x/2-6)
=« o,
ﬁ:m&
T ¢ 2 4
2 91
7[(92 92 27(6’1)
: ,
9
0 * >




6, =T(0)=T(x/2-6)

92
91
0,.=T"(),) i _
% / < 0,1 :T4(‘9n)
K1 = G(6,,x,)
P > @*;stable

2 6 —0*(n—0)
Numerically true (Mimura et.al.)



T

0,,=T%0,) >
\xn+1 — G(Hn’xn)

If §* is stable g

NN

Prop.
If > [=T1(xx), then for & near &,

| G(6,%)-G(0,y)[<q|x—y]
holds for 0< g <1. 6% =T"(6*),

=) 0 0% x — x*(n—>w) x*=G(Gx%)

==) Unique existence of stable limit cycle
In Discrete time model



Remained problems z
Discrete time model ,B y
n+1 _T4(H )

NN

g * T unsatisfactory
2
Numerically true (Mimura et.al.)

TO):=T(x/2-0 .
(6) = T(m/2=0) ODE 7—4,
article model /. M,
MB model bart

U " ’ g b

15. Ei, Masayasu Mimura and T. Miyaji, Reflection of a self-propelling rigid disk from a boundary, DCDS-A 2021, 14(3): 803-817
Special issue on recent topics in material, computer and life sciences. doi: 10.3934/dcdss.2020229




Aim to complete this book !

Tomoyuki Miyaji, Shin-Ichiro Ei
Masayasu Mimura

A Billiard Problem in Nonlinear
Dissipative Systems

— Monograph —

August 9, 2021

springer

preface

Classical billiard problem has been extensively studied in the community of math-
ematics. However, this book is concerned with billiard motion of a self-propelling
disk in a nonlinear dissipative system on a rectangular pool. As an example of self-
propelling disk, a camphor disk floating on water vessel is well-known in nonlinear
science. The laboratory experiment demonstrates that, unlike classical billiards, it
has the following properties:

(i) It reflects without collision at the boundary, and

(ii) the angle of reflection is greater than that of incidence. which is totally different

from elastic reflection.

(]

N

IMPOAOCHON .. .o oo wsmion wswns ssvssns wisassmmnme s, ssisvts sz st I
1.1 IBtPOdEEHON v o i cmios smens s vie S e G simasi. o5 1
1.2 Motion of acamphordisk...............ii 2
1.3 '‘Movitigboundaey model ... oo soiss o v s v 3
References ........ooooviiiiii 17
Mathematical modeling, simulation, and analysis .................. 19
2.1 'Mathematical modeling: «vv:s vy svwmnivspusnans arese vos 19
2.2 Numerical simulations .............ooiivviiiiiinieeeenen... 23
2.3 Reduction theory forasingleidisk.....cvvivivivisins vuviriewns 23
2.4 Repulsive interaction of two disks................ooooiii. 28
2.5 Summary and SomeTemarks . ...ovs comsnsmeiesmees smeese v 29
ReFCIBHCOS s i s S SRS SRS IR SR 455 29
Parfiele MOReIS « i o v o saensns ssesm ive v mess FERg06e v 31
3.1 Reflection from boundary . ... 31
3.2 Rectangular domain: model and simulation ..................... 39
3.3 Rectangular domain: mathematical analysis..................... R
34 Summaryand SOMETEMATKS . s cawmninvs smions s s 5l
Discrete-time models ..........ccoviviiimmniiiiiinis sivesve ces 53
4.1 Introduction of discrete-time model .. ... 33
42  Square=shaped eyCles: ... i sewsmis s wiewusn o O

0 (U 1% L e T T

422 Cubicfunction ........oooviiiiiiiiiiiiiiiiiiiiiia. 55

423 Quartic TUCON cuvu ssvmwnvussn vsms o svvs s 56
4.3 Rectangular domain .......o.ovvvvieiii i 60
44 A modified discrete-time model................ooi i, 6l
4.5 Summary and some remarks . ... 6l
DISCUBSION . <z 1 o % s S S v, 54 400,500 5, RIS oo o5 450 63



Relation between real phenomena and models

e e €A1 PhENOMENa

more realistic but Discrete time model
complicated models 0", o
LIRS N e (can not be analyzed, ?
[ —— many black boxes) \
o', P
A n
+ xn+1 )Cn
check experimentally ﬁ
@? > L ODE
O U —>(p=c. particle model
MB model % % s Mo
. . . q - 5 +——¢ s
. drift bifurcation < [2¢
— = ] y(u)ndl, ¢=-(M,|g]" -M,n)sg,
at Of2e : 2 M 2a
u = Au—u+ f(x,P), c=-(M,[q] - !

M277)§+—Oe_ D
V24



Synchronization of theory and experiment

In order to reproduce real phenomena truly

v

sophistication of model equations:
many variables, complicated nonlinearity, etc

What are checked and measured in experiments ?

Physical phenomena: considerably accurate
Chemical phenomena: considerably accurate for low molecular compounds
Biological phenomena: qualitative properties e.g. monotonicity, on-off effect

Biological systems or systems close to biology

Many unknown factors: many black boxes, no explicit nonlinearities,
unknown number of necessary variables, etc

~ >
Necessity of modeling and analysis without
any specialization for biological parts



models with black boxes

aP
@ dl
= /a A
uy = Au—u+ f(x, P),

U ; density of camphor expanding to water

@ generalization with black boxes
dP

i / 71 (U)ndl :l- Rely on parts according to physical law
dt o0, ’

U, = DAU+ Fy(U) + Fi(z, P), Corresponding to high molecular parts:
Generalize to vector values and treat as black box

ue R=UcR",D:=diag{dy, - ,dn}, d;j >0

P=s particle model

q = g +—M0 e—2aq,
\24q

g'z—(M1|g|2 -M ,n)g,

] . M
drift bifurcation E=—(M,|c]P —-M,n)é + —=Le?",
V29




Interaction of Non-radial Camphor tips

Shin-Ichiro Ei
Hokkaido University
Sapporo, Japan

Partially Joint work with
Nagayama, Kitahata, Koyano
Supported by JST, CREST JPMJCR14D3, Japan



Camphor tip on water surface
=i (B R#F)

CONE L Iida, Kitahata, Nagayama 13
\ v(u) =
----- ([ dP
. / j(f) 99, T
IR R R T I R
. - dt 8QC
tiquid | w — Au—u+f(w,P,@), n

U ; density of camphor expanding to water

b da

Fix centers —— ~; =0



Motion of Interaction

E. Nagayama, Kitahata, Koyano 2018

d= Ny, <0, N, >0
— ie_ath sin m= % il -
dt  /h - [E—>O += }

T m

I, = {(TO + £cos m@)e(ﬁ)} EX m = 2

-
- _ —> =Z—0, £—
= |H] (ellipse) 2
HH =P — P ApSIS or minor axis

/ f dP
= / ndl
Prop. L
Note: O = 0, — 0, { d®

e dl
appears in O/(<2) = /fmc vo(u)(r x n)dl,

Ut - Au—u—l_f(w:Pv@)a
then °

[Nm = 911, (arg) > 0, = — — }

iy
MRDE1FEERN vt )L




Motion of interaction : Mode 2

d—E:ie_ahNZSiIIZ: } [m=2}[ Ny >0 E%z }
— ’ 2
Edf e (ellipse)

['.:={(ro+ecos20)e(d)}

h—!H\

minor axis
__________________ a X
/ ( )ndl,
d@ mc
Note: O =0, — 6, | & _ / dl,
appears in 0(82) i . Yo (u)(r x n)
up = Au—u—}—f(a: P9,

- \



Motion of interaction : Mode 3

d= E  _q, - _ ™
[t_\/ﬁe hNgsmS:} |:> [N3>O,:,—>§ }
[ :={(ro +ecos3f)e(®)} [ 4P _ f v ()l
dt a9,
— d®

{ m = 3} 9 — = /(;QC ~yo(u)(r x n)dl,

! Uy = Au—u—i—f(CC,P,@),

A




Camphor tip on water surface
#ﬁﬂiﬁ_ (B7 R #Al)

[ida, Kitahata, Nagayama 13 B0
Y(u) = Brnyan T
ter ar
wa — = u)ndl fo, z€Q,
C?(E) LQC 71( ) ? f(a:,a:c,ﬂc) = { (;]’ 2 e Q\ﬁc,
I @ / lailr %,
dt 9,
D - | uw = Au—u+ f(z,P,0O), n @\ i
U ; density of camphor expanding to water
( dP Q2
E = / Y1 (U)ndl,
! dO Al Rely on parts according to physical law
— = Y2 (U)(r x n)d,
at 982 Corresponding to high molecular parts:
L Ut = DAU+F0(U)+F1((L’,P,@),

Generalize to vector values and treat as black box

we R=UcR", D:=diag{d,--- ,dn}, d; >0

Only assume the existence and stability of stationary solution when
F1is given.



Motion of Interaction
Ny, <0, Ny, >0

[E—>O, + L }
m

-
E =D, =
2

Apsis or minor axis

I'. :={(ro + ecosmb)e(0)} Ex. m=2
- |H| e
Universal equation

H=P — P
, =
Note: O =0, — 6, = S : —
appears in 0(52) [ = e “" Ny, sinm=E

(ellipse)

X

it~ /n

Nm is determined by experiments




Experiment

( <!> <!)-\ experiment
L,

Fix centers — ~v; =0




Experiment
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Interaction of two elliptic camphors

wARERROMEEER (EDHEERE:30 mm)
angle

30 mm real time . 14 . , l ,




summary

- Model for two camphor particles with deformation is considered.

- The equation describing the motion of angles are derived
for general reaction terms.

*In the case of small deformation from radial symmetry,
the equation is explicitly derived, even with black boxes.

Thank you for your attention

with a lot of memories of Mimura sensei
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2 "Convergence, concentration and critical mass phenomena for Af(%@

a model of cell migration with signal production on the boundary"

Philippe Souplet (Université Sorbonne Paris Nord, France)
(joint work with Nicolas MEUNIER (Université d'Evry-Val d'Essonne))

We consider a model of cell migration with signal production on the boundary. It consists in a diffusion
equation with nonlinear nonlocal advection, complemented by a no-flux condition ensuring mass conservation.

For nonlinearities with polynomial growth, we first develop a local existence-uniqueness theory in optimal
LP spaces. With help of this tool, we next obtain the following results on the global behavior of solution:

e For small initial data, we have exponential convergence towards a constant.

o If, and only if, the growth of the nonlinearity is at least quadratic, we have concentration, i.e. finite time
blowup, for large initial data.

e In the critical case of a quadratic nonlinearity, we observe a critical mass phenomenon in any space
dimension (denoting by M the mass of the L' initial data):
- for M < 1, the solution is global and bounded;
- for M > 1, there exist initial data leading to finite time concentration.

This critical mass phenomenon is reminiscent of the well-known situation for the 2D Keller-Segel system.
The global existence proof is delicate, based on a control of the solution by means of an entropy functional,
via an e-regularity type result.

e Finally we give some partial results on the localization and final profile of the boundary concentration
and on the blowup rate.



CONVERGENCE, CONCENTRATION AND
CRITICAL MASS PHENOMENA FOR A MODEL OF
CELL MIGRATION WITH SIGNAL PRODUCTION AT THE BOUNDARY

Philippe Souplet

LAGA, Université Sorbonne Paris Nord

Joint work with Nicolas Meunier, Université Evry Val d’Essonne, France

ICMMA — Meiji University, November 2023

In memory of Professor Masayasu Mimura



BIOLOGICAL BACKGROUND: CELL MIGRATION

e Cell migration: fundamental process in physiological and pathological functions
(immune response, morphogenesis, cancer metastasis, etc)



BIOLOGICAL BACKGROUND: CELL MIGRATION

e Cell migration: fundamental process in physiological and pathological functions
(immune response, morphogenesis, cancer metastasis, etc)

e Cell migration obeys general principle:
Strong correlation between direction of trajectories and velocity of cells
(fastest cells have more directional migration)

The first World Cell Race [M. Piel et al. Current Biology. 2013]

@ Race track: 4um x 12um fibronectin lines.

@ 54 different cell types from various animal and
tissues, provided by 47 laboratories.
Genotypically WT, transformed, or genetically
engineered.

@ Total of 7 000 cells. About 130 cells per cell
type.

@ Winner: human embryonic mesenchymal
stem cell, 5.2,:m/min.

@ Correlation between polarization and
instantaneous cell speed. Seems to be
universal.




CELL MIGRATION MECHANISMS

e Actin filaments: essential components of cytoskeleton of eukaryotic cells
e Polymerize and grow at one end, depolymerize and retract at other end
(near cell membrane)

e Retrograde actin flow

Large, fast actin flows enhance cell polarity, hence cell persistence time

e Actin flows as a result of advection of polarity signals

(= molecules involved in regulation of cytoskeleton activity)

1) Protusinfth Leadng Ede Deadhesion at the Trailing Edge

&

2) Adnesion at the Leading Edge 3) Movement of the Cell Body
corex under tension . direction of cell body movement

I
movement of unpolymerized actin



MODEL

u = u(t, x) concentration of solute located in cell
(cytoplasmic protein controlling active force-generation/adhesion machinery of cell)

w=V-(Vu—Alt)u), t>0, zeqQ,
(P) 0= (Vu—A(t)u) v, t>0, ze o,
u(z,0) = up(zr) >0, z€,
with convective vector field

A(t) = A(u(t)) := f(uw)vdo
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w=V-(Vu—Alt)u), t>0, zeqQ,
(P) 0= (Vu—A(t)u) v, t>0, ze o,
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with convective vector field

A(t) = A(u(t)) := ” f(uw)vdo

e (P) describes feedback loop between actin fluxes A(t) and a molecular species
- molecules advected by actin fluxes and activated at cell membrane

- activated molecules affect speed of actin flow

- higher concentration gradient across cell = faster actin flow



MODEL

u = u(t, x) concentration of solute located in cell
(cytoplasmic protein controlling active force-generation/adhesion machinery of cell)

w=V-(Vu—Alt)u), t>0, zeqQ,
(P) 0= (Vu—A(t)u) v, t>0, ze o,
u(@,0) = up(z) 20, =€,

with convective vector field

A(t) = A(u(t)) := ” f(uw)vdo

e (P) describes feedback loop between actin fluxes A(t) and a molecular species
- molecules advected by actin fluxes and activated at cell membrane

- activated molecules affect speed of actin flow

- higher concentration gradient across cell = faster actin flow

e References

[Calvez, Meunier, Voituriez, CRAS 2010]

[Calvez, Hawkins, Meunier, Voituriez, STAP 2012]

[P. Maiuri, R. Voituriez et al., Cell 2015]
[Lavi-Meunier-Voituriez-Casademunt, Phys. Rev. 2020]



MOTIVATIONS AND AIMS

e Investigate influence of nonlinearity f on global or nonglobal solvability
e Can concentration occur (on 0f2) 7 finite time blow-up ?

e Understand global and/or blow-up behavior

e Local well-posedness for rough (L?) initial data (key tool !)

Typical nonlinearities

flu)=uf, p>1

f(u) ~uP atoo, 0<p<1 (feC' f>0)

[e Traveling waves for nonlinearities with saturation f(u) = u/(C 4 u) — ongoing project]



BASIC FEATURES

1. Conservation of mass (total amount of solute).

No-flux condition =

/Qco(t,x)dx:M::/Qco(a:)da:

— special role of space L'



BASIC FEATURES

1. Conservation of mass (total amount of solute).

No-flux condition =
/co(t,x) dr =M := / co(x) dx
Q Q
— special role of space L'
2. Order of nonlinearity
Divergence formula —

A(t) = o f(u)vdo :/Qf’(u)Vudx

Eqn. becomes:

ut—Au:qu-/up_IVudx
Q

Quadratic in Vu (cf. so-called “natural growth”), nonlinearity of order p + 1



BASIC FEATURES

1. Conservation of mass (total amount of solute).

No-flux condition =
/co(t,x) dr =M := / co(x) dx
Q Q
— special role of space L'
2. Order of nonlinearity
Divergence formula —

A(t) = o f(u)vdo :/Qf’(u)Vudx

Eqn. becomes:

ut—Au:qu-/up_IVudx
Q

Quadratic in Vu (cf. so-called “natural growth”), nonlinearity of order p + 1
3. Scale invariance (e.g. half-space case Q) = {z € R"; z,, > 0})

wsolution == uy(z,t) = \/Pu(Az, \?t) also solution (A > 0)
Invariant L9-norm for ¢ = p :

[ux(, 0)l[ze = [Ju(, 0)[|Le, A >0



RELATED NONLOCAL PROBLEMS

e Nonlocal Neumann problems with zero order nonlinearities

— Au= fi(u)([y fo(u)dz), t>0, z€Q
v = g1(u) ([, g2(u)dx), t>0, v €00

[Pao 98, Liu-Wu-Sun-Li 17, Gladkov 17]
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— Au= fi(u (fog dm) t>0, xe
{ u, = g1(w) ([ 92(w) dz), t>0, z €00
[Pao 98, Liu-Wu-Sun-Li 17, Gladkov 17]
e Equations with nonlocal gradient terms (and homogenous boundary conditions)
up —u"Au = up/ |Vu|? dx

m = p = 1: model of replicator dynamics ¢
[Dlotko 91, S02, Kavallaris-Suzuki 18, Kavallaris-Lankeit-Winkler 17, Lankeit-Winkler 18]
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AU—fl (fo2 dm) t>0, e
u, = g1(w) ([ 92(w) dz), t>0, z €00

[Pao 98, Liu-Wu-Sun-Li 17, Gladkov 17]

e Equations with nonlocal gradient terms (and homogenous boundary conditions)
up —u"Au = up/ |Vu|? dx
m = p = 1: model of replicator dynamics ¢
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e Nonlocal problems with mass conservation (with homogeneous Neumann conditions):
— Au=uP — |Q|_1/ uf dx
Q
[Budd-Dold-Stuart 93, Hu-Yin 95, Jazar-Kiwan 08, Wang-Tian-1i 15]



RELATED NONLOCAL PROBLEMS

e Nonlocal Neumann problems with zero order nonlinearities
— Au= fi(u (fﬂfg dm) t>0, xe
{ u, = g1(w) ([ 92(w) dz), t>0, z €00
[Pao 98, Liu-Wu-Sun-Li 17, Gladkov 17]
e Equations with nonlocal gradient terms (and homogenous boundary conditions)
up —u"Au = up/ |Vu|? dx
m = p = 1: model of replicator dynamics ¢
[Dlotko 91, S02, Kavallaris-Suzuki 18, Kavallaris-Lankeit-Winkler 17, Lankeit-Winkler 18]
e Nonlocal problems with mass conservation (with homogeneous Neumann conditions):
— Au=uP — |Q|_1/ uf dx
[Budd-Dold-Stuart 93, Hu-Yin 95, Jazar-Kiwan 08, \S;Vang—Tian—Li 15]

e Nonlocal problem with mass control:
Ae
“Au= =
“ Jo et dx
(related with Keller-Segel system)

[Wolansky 97, Kavallaris-Suzuki 07, 18]



OUR PROBLEM

Conservative form

ut:V-(Vu—A(t)u), t>0, ze€Q,
0= (Vu—A(t)u) v, t>0, z€dQ,
u(z,0) =uo(z) 20, z€Q,

Convective-diffusive form

ug — Au=—A(t) - Vu, t>0, x €,
(P) u, = (A(t) - v)u, t>0, ze€ 0,
0, =€

~—

Vv

A = [ s = /Q () Vu da

flu) =P (p>0)




LOCAL WELL-POSEDNESS FOR ROUGH DATA

Standard theory == local well-posedness for smooth initial data (e.g. C1(€2)).

Theorem 1.

Let p > 0, ¢ > max(p, 1), ug € L4(Q).

(i) Problem (P) admits a unique maximal classical positive solution
u € C*HQ x (0,T%)) N C([0,T%); LY(Q)).

(ii) If ¢ > p and T™* < oo, then lim;_, 7~

u(®)llq = oo




LOCAL WELL-POSEDNESS FOR ROUGH DATA
Standard theory == local well-posedness for smooth initial data (e.g. C1(2)).

Theorem 1.
Let p > 0, ¢ > max(p, 1), ug € L1(Q).

(i) Problem (P) admits a unique maximal classical positive solution
u e C*HQ x (0, 7)) N C([0,T*); LLRN)).

(ii) If ¢ > p and T* < oo, then lim;_, 7~

u(t)]lq = oo.

Remarks

e (Critical role played by LP norm:

- continuation property (ii) fails for 1 <g<porg=p=1,
- for p =1, entropy blows up whenever T* < oo, namely

lim [ (ulogu)(t)dr = o0
e Condition ¢ > p in Theorem 1 also natural in view of scaling properties
e Open problem whether local existence may fail when 1 < g <p

e L' scaling critical case belongs to local existence range
(# Fujita equation ! uy — Au=uP, p=1+ %, qg=1)



CRITICAL MASS PHENOMENON FOR p=1

Theorem 2.
Let f(u) = u, ug € L*(Q) and set M = |Jug]|;.
(i) If M < 1, then T* = oo and sup;> [|[u(t)e < 00

(ii)) If M > 1 and 2 is a cylinder, then there exist ug such that T* < oo.




CRITICAL MASS PHENOMENON FOR p=1

Theorem 2.
Let f(u) = u, ug € L*(Q) and set M = |Jug]|;.

(i) If M < 1, then T* = oo and sup;> [|[u(t)e < 00
(ii)) If M > 1 and 2 is a cylinder, then there exist ug such that T* < oo.

Remarks
e Critical mass phenomenon with sharp threshold M = 1.
e Reminiscent of well-known situation for 2d Keller-Segel system.

Main difference:
- critical mass phenomenon is dimension-independent
- solutions with critical mass remain bounded, unlike critical mass case of 2d KS



CRITICAL ROLE OF EXPONENT p=1

1
Ug 1= —— / updx  (average of ug)
€2 Jo

Theorem 3. Let ug € L'.
(i) If 0 < p < 1, then T* = o0 and sup;>1 ||u(t)||oc < 0
(ii) If p > 1 and M > 0, then there exists ug such that T* = oo and ||ug|ly = M




CRITICAL ROLE OF EXPONENT p=1

1
Ug 1= —— / updx  (average of ug)
€2 Jo

Theorem 3. Let ug € L'.
(i) If 0 < p < 1, then T* = o0 and sup;>1 ||u(t)||oc < 0
(ii) If p > 1 and M > 0, then there exists ug such that T* = oo and ||ug|ly = M

Sign of nonlinearity is important ! :

Theorem 4. Let f(u) = —u™ with m > 1 and ug € L™(Q).
Then T* = oo and sup;> |[u(t)|/ec < 00




ASYMPTOTIC BEHAVIOR OF GLOBAL SOLUTIONS

Theorem 5.
(i) Let p=1 and uy € L'.
o If M < 1, then

. 3 _ 1
lim [Ju(t) — ol =0. 0= / o da.
Q

t—o00

o If M =1, there exist nonconstant steady states.

(ii) Let p > 0 and ug € L9, ¢ = max(p, 1).
o If |luplly < 1 then T* = oo and

: - < Ce—M
Jm ([u(t) = ol < Ce

e There also exist nonconstant steady states.




ASYMPTOTIC BEHAVIOR OF GLOBAL SOLUTIONS

Theorem 5.
(i) Let p=1 and uy € L'.
o If M < 1, then

. _ _ 1
lim ||u(t) — @olleo = 0, Uy = @/ ug de.
Q

t—00
o If M =1, there exist nonconstant steady states.
(ii) Let p > 0 and ug € L9, ¢ = max(p, 1).
o If ||up|lq < 1 then T* = oo and

: - < Ce—M
Jm ([u(t) = ol < Ce

e There also exist nonconstant steady states.

Remark. Previous result [Calvez, Hawkins, Meunier, Voituriez, SIAP 2012]
ut = (uy — u(0,t)u), on half-line I = (0, 00), with zero flux condition at x =0
Existence of a global, suitable weak solution

for ug € L*(I, (1 + x)dz), uglogug € LY(I), M <1



ASYMPTOTIC BEHAVIOR OF BLOWUP SOLUTIONS
e Cylinder Q = (0,L) x B, CR"ifn>2 orQ=(0,L)ifn=1
e Initial data uy € C1(Q2), axisymmetric with respect to e; (if n > 2), 9,,up <# 0

Theorem 6.
(i) Assume n > 2. Then
u(z,t) < Cxyt in Qx (0,T%).

In particular, if T* < oo then blow-up set C QN {x; = 0}.
(ii) Assume n = 1. Then

u(x,t) < (px)~VP+C in (0,L] x (0,T%).
In particular, if T* < oo then blow-up set = {0}
(iii) Lower blow-up estimate:

u(t)||oo = C(T* =)~V 0<t<T*




ASYMPTOTIC BEHAVIOR OF BLOWUP SOLUTIONS
e Cylinder Q = (0,L) x B, CR"ifn>2 orQ=(0,L)ifn=1
e Initial data uy € C1(Q2), axisymmetric with respect to e; (if n > 2), 9,,up <# 0

Theorem 6.
(i) Assume n > 2. Then
u(z,t) < Cxyt in Qx (0,T%).

In particular, if T* < oo then blow-up set C QN {x; = 0}.
(ii) Assume n = 1. Then

u(x,t) < (px)~VP+C in (0,L] x (0,T%).
In particular, if T* < oo then blow-up set = {0}
(iii) Lower blow-up estimate:

u(t)||oo = C(T* =)~V 0<t<T*

Remark: power 1/p is optimal (open question for n > 2)
Open problems (possibly difficult)

upper time rate estimate (type I/II 7)

single point BU in cylinder

BU for other domains (difficulty: monotonicity)
attractivity of nonconstant steady-states



IDEAS OF PROOFS: Theorem 1 (local existence for L? data)

e Approximation by smooth initial data

e Semigroup techniques / smoothing effects via representation formula

u(t) = S(t)uo + /Ot Ky (t—s)[A(s)u(-,s)]ds, 0<t<T,

with differentiated semigroup
(Ko (@ulla) = [ ,6aa.0)- v dn. v e (L))"

e Fixed point in fractional Sobolev spaces with time-weighted intermediate norm

sup t'/29[u; (t)[|1 /.4
te(0,7T)

e Use interpolation 4+ trace inequality W'/%9(Q) c LI(9%)

Remark. Critical case p = ¢ (especially p = ¢ = 1) more delicate



IDEAS OF PROOFS: Theorem 2 (blowup in a cylinder — case p =1, M > 1)

e Assume ug ,, < 0. Maximum principle = u,, <0

e Auxiliary functional: first moment

o(t) = /Qacludx >0



IDEAS OF PROOFS: Theorem 2 (blowup in a cylinder — case p =1, M > 1)

e Assume ug ,, < 0. Maximum principle = u,, <0

e Auxiliary functional: first moment

o(t) = /Qacludx >0

¢ = / Tiup = / 21V - (Vu — A(t)u) dz
Q Q
e IBP + B.C., mass conservation [,u = M and A(t) = [, Vudr =
qb’:—/ e1- (Vu—A(t)u) dx = (M—l)/uwldarg()
Q

Q



IDEAS OF PROOFS: Theorem 2 (blowup in a cylinder — case p =1, M > 1)

e Assume ug ,, < 0. Maximum principle = u,, <0

e Auxiliary functional: first moment

o(t) = /Qxludx >0

/ — — . —A
o) /Qxlut /Q:clv (Vu (t)u) dx
e IBP + B.C., mass conservation [,u = M and A(t) = [, Vudr =
qb’:—/Qel-(Vu—A(t)u)da:: (M—l)/quldeO
1 1
e For Q= (0,1): u(t,0) > M, wu(t,1)=u(t, 1)/ 2xdr < / 2xu(t, z)dx = 2¢(t)
0 0
= ¢' < —(M — 1)(M — 2¢(t))

1 1 1
But 2¢(0) :/0 2xug(x)dz </0 22ug(2?)dx :/0 ug(2)dz = M

— ¢ < —n < 0: contradiction



IDEAS OF PROOFS: Theorem 2 (global existence — case p =1, M < 1)

e Entropy function ¢(t) := [, (ulogu + 1)dz > 0.
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e Entropy function ¢(t) := [, (ulogu + 1)dz > 0.

e Test with logu:
2

' (t) = —/Qu_IIVu|2d:E+

/ Vudzx
0

@' (t) < —/ u_1|Vu|2dx+/ udw/ uw |\ Vul? de = (M — 1)/ u | Vul?de <0
Q Q Q Q

Cauchy-Schwarz and M <1 =



IDEAS OF PROOFS: Theorem 2 (global existence — case p =1, M < 1)

e Entropy function ¢(t) := [, (ulogu + 1)dz > 0.

e Test with logu:
2

' (t) = —/Qu_IIVu|2d:E+

/ Vudzx
0

@' (t) < —/ u_1|Vu|2dw+/ udw/ uw |\ Vul? de = (M—l)/ u | Vul?de <0
Q Q Q Q

Cauchy-Schwarz and M <1 =

e An e-regularity property:

{ up = u + ud

= smoothing effect in L> with uniform time 7(K) > 0
lugly < 1, Jlugllee < K

e Entropy bound + e-regularity = uniform L*° estimate



IDEAS OF PROOFS (continued)

Theorem 3 (global existence — case p < 1)
e L' norm is scaling supercritical

= L smoothing effect from L' bound (by local theory)

e Mass control = uniform L°° estimate
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Theorem 3 (global existence — case p < 1)
e L' norm is scaling supercritical

= L smoothing effect from L' bound (by local theory)

e Mass control = uniform L°° estimate

Theorem 5 (asymptotic behavior)

e case p =1, M < 1. Use entropy as Liapunov functional:

/ / w1 Vul? dedt < oo
1 Ja

—> w limits are space-independent hence = gy by mass conservation

e case p > 1, ||ugll, < 1. Use [, u? as Liapunov functional



IDEAS OF PROOFS (continued)

Theorem 3 (global existence — case p < 1)
e L' norm is scaling supercritical

= L smoothing effect from L' bound (by local theory)

e Mass control = uniform L°° estimate

Theorem 5 (asymptotic behavior)

e case p =1, M < 1. Use entropy as Liapunov functional:

/ / w1 Vul? dedt < oo
1 Ja

—> w limits are space-independent hence = gy by mass conservation

e case p > 1, ||ugll, < 1. Use [, u? as Liapunov functional

Theorem 6 (blow-up space asymptotics — case n = 1)
e Auxiliary functional
¢ = uy +uP — Kju — Ko
Maximum principle = ¢ < 0
e Integrate in x = u(x,t) < (pzr)~Y/? +C



CONCLUSIONS

e Optimal results on local well-posedness in LY spaces (critical exponent g = p)
e Optimal results on global solvability (critical exponent p = 1)

e Sharp mass threshold phenomenon for p =1 (critical mass M = 1)

e Asymptotic convergence to constants for subcritical mass or small data

e Nonconstant steady states

e Partial information on blow-up set, rate and profiles

Open problems

upper time rate estimate (type I/IT ?)
single point BU in cylinder
BU for other domains

attractivity of nonconstant steady-states



CONCLUSIONS

e Optimal results on local well-posedness in LY spaces (critical exponent g = p)
e Optimal results on global solvability (critical exponent p = 1)

e Sharp mass threshold phenomenon for p =1 (critical mass M = 1)

e Asymptotic convergence to constants for subcritical mass or small data

e Nonconstant steady states

e Partial information on blow-up set, rate and profiles

e Open problems

- upper time rate estimate (type I/11 7)

single point BU in cylinder

BU for other domains

attractivity of nonconstant steady-states

THANK YOU FOR YOUR ATTENTION !
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"Front propagation in the presence of obstacles"

Hiroshi Matano (Meiji University, Japan)

In this talk I will discuss the effect of geometric obstacles on the propagation of fronts. Two types of fronts are
considered. One is a transition layer in a bistable reaction diffusion equation. The other is a curvature-dependent motion
of plane curves. Both types of fronts are closely related. In the first part, I will present my joint work with Henri
Berestycki and Francois Hamel. I will then discuss the curvature-dependent motion of plane curves through an infinite
channel with saw-toothed boundaries. For this second topic, I will first recall my joint work with Ken-Ichi Nakamura
and Bendong Lou (2006, 2013), which deal with domains with mildly undulating boundaries. I will then discuss my
ongoing joint work with Ryunosuke Mori, which deals with domains whose boundaries have steeper bumps. In such
domains, a new type of phenomenon, which we call “obstacle-induced propagation”, can be observed.



Front Propagation
In the presence of obstacles

Hiroshi Matano
(Meiji University)

ICMMA 2023 “Reaction-diffusion systems:

from the past to the future”

MIMS, Meiji University, November 2, 2023

Tokyo 2023
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Outline of the talk

ﬂ . Introduction \

2. Front propagation through a perforated wall

3. Propagation in a saw-toothed cylinder
Curvature-dependent motion of interfaces

4. Previous results
Motion without singularity

5. Main results

Traveling waves with singularities &

Obstacle-induced propagation
Q. Numerical simulation /

Joint work with Ryunosuke Mori (Meiji University)

Tokyo 2023



1. Introduction

Propagation in the presence of obstacles
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Front propagation in the presence of obstacles

Theme 1 Effect of localized obstacles
ou : N
a:Au—l—f(u) in Q: =R\ K K : obstacle
=) =
Incidental
o) e
- . E> S . distubance

planar front

EI What is the long-time effect of this incidental disturbance?

(Case1) K: compact obstacle Berestycki-Hamel-M. (CPAM 2009)

{ (Case2) K: perforated wall subject of the present talk

Tokyo 2023



Theme 2

Effect of boundary geometry on front propagation

o

Q2

@ Propagation: Which direction is faster?
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Theme 2 Effect of boundary geometry on front propagation

Q2
-N
— _ The bigger the
opening angles, the
slower the speed
@ Propagation: Which direction is faster?
Related problem:
Existence of a non-constant v 1979

stable stationary solution in a

dumbbell-shaped domain M — Mimura (1983)

competition sys

Tokyo 2023



RD equation f(u)\ /\
u

0 .
8—? = Au + f(u) f(u) : bistable 0 , 1\

1
balanced: / f(s)ds =0 unbalanced: f(s)ds >0 |or
0 0

Approximate law of motion

Interface motion (N>1)

(A) f: balanced V=WN-1)H
mean curvature flow

(B) f:unbalanced V=(N-1)H + A4

V' = normal velocity
H = mean curvature
N = space dimension
A : driving force

v

S. Allen & J. Cahn (1979)
K. Kawasaki & T. Ohta (1982)

Tokyo 2023
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Effect of boundary geometry on front propagation

Q2

The bigger the
' - opening angles, the

slower the speed

N

@ Propagation: Which direction is faster?

Too rapid widening

= :\ blocks propagation.

The same fact was used, e.g., in the | | foe
study of spreading depression (SD) ; "
by Dronne et al (2004). . 02

yo 2023



Related result. If the holes are too small, then blocking occurs.

|dea of proof. Either by a variational
method or by a super-solution method.

cf. [M. 1979], [M.-Mimura 1983] (A)
[Beres.-Hamel-M. 2009] (B)
[Berestycki-Bouhours-Chapuisat 2016] (C)

T 11
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2. Propagation through a
perforated wall

Joint work with Henri Berestycki (EHESS)
Francois Hamel (Aix-Marseille)

Tokyo 2023



Formulation of the problem

u = Au+ f(u), re€Q:=RV\K
(E) {

ou
5—0, IE@Q

f(0) = fla) = f(1) =0, f(0) <0, f/(1) <0

f(u): bistable

/Olf(s)ds > ()

0<d<1, d(—00)=0, d(+o0)=1.

Planar traveling front { ¢'(z) —cg'(2) + f(o(2)) =0 (2 € R),

o + ct)
1
y <:|
0 X —
Q Under what conditions can the front e
penetrate through the wall?

Tokyo 2023



Invasion / blocking dichotomy

Theorem 1 (Dichotomy). One of the following alternatives holds for
the limit profile:

lim wv(z;,y) =1 (invasion), lim wv(x;,y) =0 (blocking)
Tr1——0O Tr1——0<

The above convergence is uniform with respect to y € RY=1 and K so
long as K C {z e RY | —M < z; < 0}.

In particular, there is no blocking profile that converges to 0 too slowly.

A

v

Tokyo 2023




Invasion / blocking dichotomy

Theorem 1 (Dichotomy). One of the following alternatives holds for
the limit profile:

lim wv(z;,y) =1 (invasion), lim wv(x;,y) =0 (blocking)
Tr1——0O Tr1——0<

The above convergence is uniform with respect to y € RV~! and K so
long as K C {z e RY | —M < z; < 0}.

Corollary 2. Let K1, Ko, K3, ... be a sequence of walls satisfying
K,c{zeRY | -M<2, <0} ((=1,2,3,...)

and converging to a wall K in a certain appropriate sense. If blocking
occurs for every K; (1 =1,2,3,...) then the same holds for K.

Dichotomy theorem | <—— | De Giorgi type lemma

Tokyo 2023




Theorem 3. If the holes are too small, then blocking occurs.

|dea of proof. Either by a variational
method or by a super-solution method.

cf. [M. 1979], [M.-Mimura 1983] (A)
[Beres.-Hamel-M. 2009] (B)
[Berestycki-Bouhours-Chapuisat 2016] (C)

T 11
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Three types of walls

1. Wall with large holes

A ball of radius R, can pass through one of the
holes in the wall, where R, is a certain positive
number to be specified later.

2. Small capacity wall

K is close to a set of capacity O in a certain sense.
(K. is in the € neighborhood of a set K|, of capacity 0.)

3. Skeleton wall

K consists of thin panels parallel to the x, axis.
More precisely, K, is a locally finite union of
hypersurfaces parallel to the x, axis and let X,
converge to K, in a certain sense.

Tokyo 2023



3. Propagation in a saw-toothed
cylinder

Curvature-dependent motion of interfaces

Joint work with Ryunosuke Mori (Meiji University)

Tokyo 2023



Curvature-dependent motion of a plane curve

[V =r+ A } V' normal velocity
K  curvature

A constant >0

Tt

 Evolution of a phase boundary.
* Singular limit of the Allen-Cahn equation

Oru = Au+ f(u)

Tokyo 2023



Motion in an infinite strip with undulating boundaries

V=k+A]

V' normal velocity
K  curvature
A constant >0

Motivation

1. To study the effect of geometry on the
speed of propagation.

2. Find conditions on the boundary shape
for propagation and blocking.

New discovery: obstacle-induced propagation

Tokyo 2023



Su 1 Singular limit
— = Au+ 5 (f(u) —eg(u)) 1 > mean curvature flow
ot € . .

sharp-interface limit

e — 0
' >
u=0
A\Transition layer |
(moving front) sharp-interface

A A -

N

" front

Typical expample

M 1
%zAquC—C;u(l—u)(u—§—5a) — V=kr+A
’ - Tokyo 2023



2. Previous results

Motion without singularity
(the case of mildly undulating boundaries)

[1] HM, K.-l. Nakamura, B. Lou
(Networks & Heterogeneous Media 2006)

[2] B. Lou, HM, K.-l. Nakamura
(JDE 2013)

Tokyo 2023



V=/-£-|—A} Qe={-H—-9g"(y) <z <H+g5(), y cR}

V' normal velocity
K curvature
A constant

95.(y) = eg+(y/e) |

g+(y) recurrent functions

If the curve is a graph: y = u(x,t)
then the equation reduces to:

[ut 1—|—u -I—A\/l-l—u}

e (G (1), 1) = Fgo(u(Cx(1),1)), (Cx(t),u(Cx(t).1)) € DL

Tokyo 2023



Notation

a4+ = sup g/ (y) maximal opening angles
Y
bt = — ir?}f gt (y) maximal closing angles
Yy
1
6 "\,\
9() 0,0
Ny
‘/O/ X
T

Tokyo 2023



Stationary solution

V=xk+A

y . stationary

N

y is a circular arc of curvature —A4
whose ends meet the boundary
with the angle n/2 .

Definition

Blocking: The curve remains bounded as t — .

Propagation: The curve (or at least its portion goes to infinity in
y directionas t — o .

Tokyo 2023



Slope condition in the previous works

[1] M, Nakamura & Lou (2006) 7
[2] Lou, M & Nakamura (JDE 2013) 4
/ 70 \ /6 "\.,\
0 < U, 6:& < —
4
9(y)
Boundary slope condition
\_ / o
Assumption on uz(2,0)] < 1 7 T
the initial curve -
%

A unique classical solution of the following problem exists
globally in time and satisfies |u,(x.t)| < 1 ("t > 0))

/ Motion without
[ut 1 _|_ u2 > T Ayl +u } B.C. singularity

Tokyo 2023




The results of MNL (2006)

g(y) periodic

1. Blocking occurs if and only if there is
a stationary solution, or, equivalently,
ifandonly it 94H < sina_ + sina
In this case, any solution converges
to a stationary solutionas t - « .

2. If no stationary solution exists, then
there exists a traveling wave solution,
which is unique up to time shift. In
this case, any solution converges to a

A 0_Qe
travelingwave as t — oo. 3

&

3. Results on the homogenization limit.

|dea of proof: Strong maximum principle and the analysis of
the omega limit set.

Tokyo 2023



What are traveling waves?

The periodic case:  9+(y+ L) = g+(y), i.e. ¢-(y+eLl)=g5(y)

t
Definition (periodic TW): ) Ut ta+T)
/ Ua(x,tl +T€)
Ue(z,t +Te) = Us(z,t) +eL| & t U* (3, £2)
UE(SB, tl)

ce :=¢€eL /T: average speed
\

Remark: In the non-periodic case, traveling waves can be defined
by using the notion of hull of a function.

Tokyo 2023



Homogenization

[ 93 (y) = eg+(y/e) }

boundary shape

Homogenization limit
Y (t) = ¢(x) + cot (¢ — 0)
Co: limit speed

@: limit profile a

€ large € small

The limit contact
angle plays the
key role.

What determines the limit speed ?

Tokyo 2023



[gff(y) =¢eg;(y/e) = O J

2

9

Difficulty: The two ends of the curve flips back and forth very
rapidly, which makes it difficult to derive a precise asymptotic
expansion even formally.

Strategy

Estimate the gradient at v/ away from boundary.

Tokyo 2023



Homogenization limit

Theorem [1] (homogenization).

Assume AH > sina andlet U%(x,t) be the periodic TW that is
normalized to satisfy U¢(0,0) =0 . Then

(i) U¢(x,t) converges to a function of the form ¢(x) 4+ c,t as € — 0

whose contact angleis 0* =7/2 — o .
Cosn

(8%
(i) The limit speed c¢p is determined by H:/o 1 dn.

— € COS 7

0* 0*
w(x) + cot

Tokyo 2023




COS
H = / "
A — cgCOsn

Corollary. The limit speed ¢, satisfies

The larger the

opening angle &
the slower m—
the speed ¢, .

Tokyo 2023



3. Main results

* Traveling waves with singularities
* QObstacle-induced propagation

Tokyo 2023



Removal of the slope condition

f1
/3 N
9(y)
The curve may touch the boundary
besides the endpoints, which force:
the curve to split, thus creating ; $

~

singularities.

The solution can no longer be treated in the classical framework,
so we consider the problem in the framework of viscosity solutions.

Tokyo 2023



Viscosity solution

Classical A/ 1
setting [ut 1 —|— u2 + T ]

g (C(0). 1) = Foo(u(Ca(t), 1)), (C£(t), u(Cs(t),1)) € I+
Level set Regard the curve y; as a level set of an auxiliary

approach function U(x, t) .

z=Ul(x,y,1)

= normal vector,

o,U

Tokyo 2023



The function U satisfies the following equation formally.

e

VU
drU=|VU|div( )—A|VU| in Q
|VU|

0,U=0 on 0Q.

We consider viscosity solutions of the above equation and regard it
as a solution of the original problem in a generalized sense.

Note: we focus on the central component of the viscosity solution.

U(y,) : viscosity solution CU(y,) : central component

U (o)

Tokyo 2023



Blocking and propagation

1. Blocking occurs if and only if there is
a stationary solution.

2. If no stationary solution exists, then
there exists a traveling wave solution,
which is unique up to time shift. In
this case, any solution without
fattening converges to a traveling
waveas t - o« .

3. Results on the homogenization limit.

5

Corollary. If the bumps are sufficiently dense, 7 \
then propagation occurs.

Obstacle-induced propagation
No stationary

(This idea was proposed by H. Ninomiya for RD.) solution Tokyo 2023



4. Numerical simulation

Propagation with singularities

Tokyo 2023



. . . . Simulation by Steffen Plunder
?
Which direction is faster” (ASHBI, Kyoto University)

b4

e 3% ~_S——
—— p— l

e b o e Tokyo 2023



. . . . Simulation by Steffen Plunder
?
Which direction is faster” (ASHBI, Kyoto University)

-, ;
—rd

Interactive live solutions of PDE
sssssss fen oy s Tokyo 2023



. . . . Simulation by Steffen Plunder
?
Which direction is faster” (ASHBI, Kyoto University)

'\-..____,.-"I

Interactive live solutions of PDE
sssssss fen oy s Tokyo 2023



- : Simulation by Steffen Plunder
Obstacle-aided propagation (ASHBI. Kyoto University)

VisualPDE
@ Interactive live solutions of PDE
sssssss , right on your device

Tokyo 2023



Obstacle-aided propagation

Simulation by Steffen Plunder
(ASHBI, Kyoto University)

sssssssssssssssssssssssss
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Obstacle-aided propagation

Simulation by Steffen Plunder
(ASHBI, Kyoto University)

=  (bstacle-induced
propagation

sssssssssssssssssssssssss
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Thank you for your
attention!
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