
Workshop

Abstract
Speaker  /  Title 

1

2

3

4

5

6

7

8

9

10

11

12

13
–A Old and New Artistic Exercise"



Speaker  /  Title 

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29



1 
 

Superimposition of Rigid Origami Patterns 

Xiang Liu1, Joseph M. Gattas2, Yan Chen 1,3* 

1 School of Mechanical Engineering, Tianjin University, Tianjin 300072, China 
2 School of Civil Engineering, University of Queensland, St Lucia, QLD 4072, Australia 
3 Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, 
Tianjin University, Tianjin 300072, China 
* Corresponding Author <yan_chen@tju.edu.cn> 
 

1. Introduction 

Origami-inspired engineering is used to apply origami science and technology to the 
design of engineering structures. The majority of existing self-folding structures either 
use a bespoke crease pattern to form a single structure, or a universal crease pattern 
capable of forming numerous structures with multiple folding steps.  

2. Superimposition of Patterns 

We propose a fundamentally new method, called superimposition, for generation of 
multiple 1-DOF rigid-foldable configurations from pre-defined crease patterns, such that 
kinematic independence and 1-DOF mobility of each individual pattern is preserved. 
Sheets can thus be created that contain multiple states with different or complementary 
functionality. The superimposed patterns can be classified into two families by 
considering the functionality, one is to fold the non-flat foldable patterns into a compact 
flat folding (Fig. 1), while the other is to fold the patterns in two steps to achieve much 
larger deployable ratio (Fig. 2). The proposed method has substantial potential for 
application in origami-inspired engineering design. 

 
 

 

Figure 1 The thick-panel accordion shelter 
based on the superimposed Arc and Miura-ori 
patterns, with rigid motion between the two 
discrete states. 

Figure 2 Two folding sequences of the 
superimposed pattern with different hill and 
valley crease assignment. 
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A Consideration on Industrialization of Origami Structure     
Ichiro HAGIWARA 1, 

1Meiji Institute for Advanced Study of Mathematical Sciences, Japan 

 
1. Introduction 
Recently we have researched about pairing origami structures such as Nojima polyhedron and Tachi-Miura  

polyhedron for crash energy absorbers. They are both easy to be manufactured but not so much absorbed 
energy. On the other hand, reversed spiral cylindrical origami structure (RSC) has splendid ability for crash 
absorbed energy but it is difficult to be manufactured. These structures are shown in Fig.1. The RSC structure 
inspires us a new structure which has splendid crash absorbed energy and is easy to be manufactured. This is also 
the Origami engineering.       
2. Force-Deformation Characteristics of Origami Structure and Its Application 
Fig.2 shows that the initial peak force sometimes too large for passengers which is a representative 

Force-Deformation curve(F-D curve) for conventional hollow quadrilateral member. On the other hand, RSC 

has the ideal F-D curve parallel to the Deformation axis. We used origami structures for the helmet of 

“amazing skills”contest in the NHK which must be smaller than 300mm×150mm×50mm box and even if the 

weight 5kg from a height of 1m over the top has fallen in the head, the impact force must be damaged less than 10% 

without helmet. Our helmet consists of 3 origami structures shown in Fig.3. Fig.2 is the reason why RSC is 

selected among 3 parts. This contest is concerned with Origami engineering and crush problem which are 
both my measure. So we had complete victory. RSC anew inspired a splendid structure. And based on this 
helmet, the helmet on Fig.4 is on the market.  

 
 
 
 
 
 

(a) (b) (c) 

 
Fig.1 (a)Nojima Polyhedron ,(b)Tachi-Miura Polyhedron Fig.2 Crash Box(left) and Its load-displacement 

(c)Reversed Spiral Cylindrical Origami Structure Characteristics(right)                       
                                             

 
Fig.3 Origami-helmet for “Sugowaza” in NHK Television            Fig.4 Helmet on the market                 

 

(b)RCS 

(a)Accordion Fold 

(c)Honey comb 

Crash Box 
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Crease Patterns and Mechanisms in Insect Wing Folding 
Kazuya Saito1 

1Institute of Industrial Sciences, The University of Tokyo 

 
Foldable hindwings in insects are one of the ultimate deployable structures and have large potential for 
engineering applications, because they have sufficient strength and stiffness to tolerate 20–1000 beats per 
second in the flight position, although they can be folded and unfolded instantly depending on the situation. 
Among wing folding insects, beetles (Coleoptera) are known to use the most highly diverse wing folding 
patterns and mechanisms [1]. Unlike six legs, the wings of insects are considered to be derived from the 
tergal exoskeleton. Their folding and unfolding mechanisms involve the elastic behaviors of structures, 
internal forces driven by muscle or blood pressure and external forces from other body parts. Understanding 
these mechanisms requires not only analyzing the materials and structures of the wings but also careful 
observations of how they are actuated in living specimens. This study focuses on a group of beetles that have 
elastic-deploying-type wings, and aims to reveal their wing-folding/unfolding mechanisms. These beetles use 
wing elasticity for deployments and therefore can quickly take off. On the other hand, when it comes to wing 
storing, they have to fold their wings against elastic forces. Usually, this process requires the supports of 
other body parts: the abdomen and elytra. Note that these folding movements can enable the beetles to 
achieve two different objectives at the same time: quick wing-folding and efficient storage of elastic energy 
for subsequent wing deployment. Therefore, detailed investigations of these movements are expected to 
generate useful knowledge in the development of excellent self-deploying systems. This study uses 
high-speed cameras to reveal the details of these motions. As a typical example of this type wings, this paper 
focuses on ladybird beetles (Coleoptera: Coccinellidae)(Fig. 1). First, on the basis of the reports of 
entomologists and our own observations, the factors relating to the actuation of insect wing folding and 
unfolding are described. Next the detailed motion involved during take-off and wing storing in ladybird 
beetles are observed using high-speed cameras. The analysis of these movies reveals the detailed processes 
of wing-unfolding and folding in ladybird beetles. Finally, the characteristics of wing-folding mechanism are 
summarized, and the potentials for engineering applications are discussed. The discussion also includes an 
outline of the future works required on the engineering side to reveal the detailed systems of these excellent 
deployable structures. 
 
 
 
 
 
 

Fig. 1 Wing unfolding motion in a ladybird beetle 
 

Reference 
[1] Kazuya Saito, Shuhei Yamamoto, Munetoshi Maruyama, Yoji Okabe (2014) Asymmetric hindwing 
folding in rove beetles, Proc. Natl. Acad. Sci., 111(46), pp.16349-16352.  
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Characteristics of deformations on assembled structures by origami forming     
Kousuke Terada1, 

1National Institute of Technology Fukushima College, Japan 

 
1. Introduction 
Considering the earth environment and energy problem, the research as lightweight and high strength 
structures should be important. Assembled structures which can be produced by origami forming, have big 
merits on its application to improve the flexibility of structure designs. Characteristics of deformations of 
assembled structures are investigated in this paper based on measurements and FEM calculations [1]. 
2. Measurements and FEM calculations  
Fig.1 represents FEM model as an example of assembled structures, which consists of 10 cores, upper/lower 
panel. This A-type has spot weld elements between cores and lower panel. On the other hand, B-type is 
continuous structures as upper/lower panel and cores. Fig.2 shows a hydraulic system universal testing 
machine to evaluate the bending stiffness by 3 points bending mechanism. Comparison between measured 
data and FEM results for relationship with load and deformation shows FEM results are in good agreement 
to measured data. Mises stress distribution of A-type (Fig.3) has stress concentration area at the contact area 
between panels and cores much larger than that of B-type (Fig.4) and deformations of A-type are overall.  
 
 

  

 

 

 

 

 

  

Fig.1 FEM model for assembled structures.                   Fig.2 Assembled structures in the bending test. 

    Shell element thickness is 1.5mm.                           Weight of aluminum structures is 6.5kg.   

 
 
    
 
 
 

Fig.3 Mises stress distribution of A-type.                     Fig.4 Mises stress distribution of B-type.                   
3. Conclusions 
Assembled structures by origami forming that can be produced actually as high flexibility to design, are 
expected to serve as internal structural reinforcement materials. Characteristics of deformations as them are 
shown clearly that the stress concentrations generate at many joint points and they deflect overall.   
Reference 
[1] Terada, K., Tokura, S., Sato, H., Makita, A., and Hagiwara, I., Evaluation of the bending stiffness on assembled 

lightweight and high strength panel,No.15-00039[DOI:10.1299/transjsme.15-00039],Vol.81,No.828,2015.  
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The Waterbomb Origami Tube 
Zhong YOU1

1Department of Engineering Science, University of Oxford, U. K. 

1.  Introduction 
In origami, the waterbomb tube refers to an origami structure made from a paper pattern 

obtained by tessellation of the so-called waterbomb bases. One of the most distinctive 
characteristics of the waterbomb tube is that it has a negative Poisson’s ratio: when compressed, 
both its length and diameter get smaller. This has led to a number of notable practical 
applications including an expandable medical stent graft, a transformable worm robot, as well as 
a deformable robot wheel. Despite these applications, its precise motion behaviour when being 
compressed and the resultant mechanical property have remained ambiguous, especially whether 
the shape change is rigid origami, in which the facets remain flat and un-deformed whilst 
rotating about bounding creases, or whether the facets themselves have to deform. To know this 
is critically important for it to be used to create a metamaterial and for other current and future 
applications. In this talk, I shall uncover the true motion behaviour of the waterbomb tube 
through a detailed kinematic analysis and structural simulation thereafter.  
2.  Characteristics of the Watermomb tube 

The behaviour of a waterbomb tube depends on its geometric parameters. It turns out that 
some tubes are capable of transferring between a pure rigid origami to structural deformation 
under external loadings, and there exists a mechanism-structure-mechanism transition in its 
motion, Fig. 1. More interestingly, the tube has an inherited ability of being switched among the 
various rigid motion paths that corresponding to different mechanical properties. The talk will 
provide detailed information on when this is happening and how it can be tuned. I anticipate that 
this research will provide a solid foundation for full exploitation of this ancient origami object to 
create novel metamaterials, shape-changing structures and soft robots. 

Fig. 1. A waterbomb tube folds from the expanded configuration (i) to the fully contracted 
configuration (vi). (i) to (iii), and (iv) to (vi) are rigid folding whereas (iii) to (iv) is not. 
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ICMMA 2016 (Nov. 2-9) 

Continuous Flattening of Boxes with Thickness 
 

CHIE NARA 
Meiji Institute for Advanced Study of Mathematical Sciences, Meiji University, Japan 

 
1. Introduction 

 When we want to flatten an empty box, how to manage it? There are many ways to do so; some people 
may cut and open it, or others may push it by force. Here, we treat such problem a little precisely by using 
mathematical definitions which depend on materials. First, we consider boxes made of paper with   
zero-thickness, which means papers can be folded by creases. Next, we discuss on the case that the box is 
made of rigid faces with suitable hinges (that is, panel-hinges). Finally, we study on the case that the box is 
made of rigid faces with thickness. For the sake of industrial applications, we prefer methods which are 
simple and elegant.          

  
 
                                                                                           

(K. Matsubara-C.N.) 

2. Continuous motions 
The problem of continuous flattening polyhedra made of paper, without cutting and stretching, was 

originally proposed by E. Demaine, M. Demaine and A. Lebiw in 2001, and .published in 2007 in [2]. If the 
shape is a convex polyhedron, there were at least three methods given by author et al. In this talk we use the 
kite method shown in [3, 4] among them, and introduce several ways of flattening a zig-zag belt. We discuss 
the difference between the ways for crease patterns. The idea may help us to find an efficient way, as we 
worked on the cupboard foldable helmet shown in the following figures.          

 
 
 
 
If a box is made of thick material, we need to manage the continuous motion for flattening without 

self-intersection more carefully. There are known results for folding thick panels [1] which we use for 
flattening boxes with thickness.  
 
3. Future works 
 There are many polyhedral figures with thickness which are expected to be foldable. Therefore, we would 
like to continue finding suitable moving crease patterns and places of hinges.   

 Reference 
[1] Yan Chen, Rui Peng, Zhong You. Origami of thick panels. Science, 349 (2015), 396-400. 

[2] E. D. Demaine and J. O'Rourke. Geometric folding algorithms, Linkages, Origami, Polyhedra.  

Cambridge University Press, 2007. 

[3] J. Itoh and C. Nara. Continuous flattening of Platonic polyhedral. Computational geometry, Graphs and 

Applications, 7033, LNCS, Springer -Verlag (2011), 108-121. 

[4] C. Nara. Continuous flattening of some pyramids. Elem. Math. 69 (2014), 45-56. 
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A survey on computational complexity of finding good folded state with few 
crease width 
Ryuhei Uehara1, 

1School of Information Science, Japan Advanced Institute of Science and Technology, Japan 

 
1. Introduction 
For a given crease pattern, there exists an infinite number of folded states which are consistent of the pattern. 
More precisely, for a given random string of mountain and valley of length n, there are f(n)=Θ(1.65n) folded 
states on average for a paper strip of length n+1 having crease pattern at regular intervals. This function f(n) 
has upper bound O(2n) and lower bound Ω(1.53n) from mathematical point of view (see [1] for the details). 
From the practical point of view, among this exponentially many folded states, it is natural to aim to find a 
good folded state that has better property than the others. From this viewpoint, we introduced a notion of 
crease width that is the number of paper layers between two paper segments joined at the crease. From the 
viewpoint of theoretical computer science, we have investigated computational complexity of the 
minimization problems for crease width. We showed hardness for some problems, and gave some efficient 
algorithms for the other. A survey of this research will be given. 
2. Stamp folding and crease width 
We focus on a 1D strip paper of length n+1. The input of the problem is a string over “mountain” and 
“valley” of length n. Then there are exponentially many folded state of unite length of this paper with respect 
to this string. A special case is that the case of the string “MVMV…” which yields to a pleat folding. The 
number of folded state is one if and only if the string gives pleat folding. The other case, we have two or 
more folded state for a given string. It is still open estimation of the number of folded state for a given crease 
pattern except this pleat case. Especially, we do not know a string of length n that gives most folded state. 
When a crease pattern is given, it is natural to find a good folded state from the viewpoint of accurate folding 
and stress of paper. From this viewpoint, we like to minimize the number of paper layers at each crease. We 
show that this problem is intractable in general in [2]. That is, most cases are NP-complete, which means that 
we cannot make any program that solves this problem efficiently. We also prove that some cases can be 
solved efficiently. Precisely, we can find a minimum total crease width when this total value is reasonably 
small. In the term of theoretical computer science, we show that this problem is fixed parameter tractable in 
this situation. Recently, we extend the origami model from regular intervals to general case in [3]. That is, 
we extend the results for regular intervals to general non-regular intervals. We again show that most 
problems are intractable in this new model. 
3. Conclusions 
From the mathematical point of view, we have some unsolved problem in stamp folding. Especially, what the 
most complex string that gives most folded states? From the viewpoint of theoretical computer science, 
developing efficient algorithms seem to be interesting problem. Extension to 2D is another issue. 
Reference 
[1] Ryuhei Uehara, Stamp foldings with a given mountain-valley assignment in ORIGAMI5, pp. 585-597, CRC 

Press, 2011. 
[2] Takuya Umesato, Toshiki Saitoh, Ryuhei Uehara, Hiro Ito, and Yoshio Okamoto, Complexity of the stamp 

folding problem, Theoretical Computer Science, Vol. 497, pp. 13-19, 2012. 

[3] Erik D. Demaine, David Eppstein, Adam Hesterberg, Hiro Ito, Anna Lubiw, Ryuhei Uehara and Yushi Uno, 

Folding a Paper Strip to Minimize Thickness, The 9th Workshop on Algorithms and Computation (WALCOM 

2015), Lecture Notes in Computer Science Vol. 8973, pp. 113-124, 2015. 
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Principle and experimental evaluation of origami-inspired vibration isolators 

Sachiko Ishida
1

 

Joint work with Kohki Suzuki
1

 and Haruo Shimosaka
1

 

1

Department of Mechanical Engineering, Meiji University, Japan 

 

1. Introduction 

In this talk, the author shows a principle to isolate vibration using a foldable cylinder with a torsional 

buckling pattern and experimental results of a prototyped vibration isolator designed based on the principle. 

 

2. Principle to isolate vibration using foldable structures 

It has been known that a nonlinear spring with high-static-low-dynamic stiffness is theoretically able to work 

as a vibration isolator around a static equilibrium position that is in a low-stiffness range [1]. By numerical 

analysis, it is identified that an origami-based foldable cylinder with a torsional buckling pattern has a 

high-static-low-dynamic-stiffness-spring characteristics that implies the possibility to apply it to isolator [2]. 

 

3. Experimental results 

Figure 1 shows a prototyped vibration isolator using versatile mechanical components based on the 

above-mentioned foldable cylinder. To see the possibility to practical usage, the vibration responses against 

z-dimensional signals of seismic waves were examined. As a result, it was confirmed that the isolator 

enabled to mitigate vibration at high frequency range (Figure 2). On the current configuration, the applicable 

frequency range is over 6 Hz, which is to be improved for the future. 

         

 

 

 

Reference 

[1] Carrella, A., Passive Vibration Isolators with High-Static-Low-Dynamic-Stiffness, VDM Publishing, 2010. 

[2] Ishida, S., Uchida, H., Shimosaka, H., and Hagiwara, I., Design Concepts and Prototypes of Vibration 

Isolators Using Bi-stable Foldable Structures, Proceedings of ASME 2015 International Design Engineering 

Technical Conferences & Computers and Information in Engineering Conference, DETC2015-46409. 

[3] Ishida, S., Suzuki, K., and Shimosaka, H., Design and Experimental Analysis of Origami-inspired Vibration 

Isolators with Quasi-zero-stiffness Characteristic, Proceedings of ASME 2016 International Design 

Engineering Technical Conferences & Computers and Information in Engineering Conference, 

IDETC2016-59699. 

Figure 1 Prototyped vibration isolator. The 

figure was extracted from [3]. 

Figure 2 Seismic waves generated on the Tohoku-Pacific Ocean 

Earthquake and response waves by the prototyped isolator. The 

figure was extracted from [3]. 
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ICMMA 2016 

Folding Paper: Visual Art Meets Mathematics 
 

Erik Demaine 
Massachusetts Institute of Technology, USA 

 
 

My father Martin Demaine and I like to blur the lines between art and mathematics, 
by freely moving from designing sculpture to proving theorems and back again.  Paper 
folding is a great setting for this approach, as it mixes a rich geometric structure with a 
beautiful art form.  Mathematically, we are continually developing algorithms to fold 
paper into any shape you desire. 

Sculpturally, we have been exploring curved creases, which remain poorly understood 
mathematically, but have potential applications in robotics, deployable structures, 
manufacturing, and self-assembly.  By integrating science and art, we constantly find 
new inspirations, problems, and ideas: proving that sculptures do or don't exist, or 
illustrating mathematical beauty through physical beauty.  Collaboration, particularly 
as a father-son team, has been a powerful way for us to bridge these fields.  Lately we 
are exploring how folding changes with other materials, such as hot glass, opening a new 
approach to glass blowing, and finding new ways for paper and glass to interact. 
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Four-dimensional origami model of the alveolar structure in the human lung  
1, 

1Division of Engineering Technology, JSOL Corporation, Japan 

 
1. Introduction 

The alveolar system in the mammalian lung is one of the most complicated structures in the living organ. 
The air pathway is space-filling in spite of a part of a rooted tree originated from the trachea, and its 
configuration changes during respiratory cycle. I previously proposed a computational model of the 4D 
alveolar structure [1], but very few people understood it because of geometric complexity. Then, I have 
constructed an origami model which is almost equivalent to the computational model[2]. One can make a real 
solid model by oneself, and understand how it would be moved during respiratory cycle.  
 
2. Single origami alveolus  

The left part in Fig.1 indicates a sheet for a single alveolar origami model. When neighboring edges of ping 

parts are connected by cellophane tape, the sheet becomes a 3D object, and a pink ring, corresponding to the 

alveolar mouth, is generated. As the pink ring is folded at black lines, its opening becomes smaller, and finally is 

closed (right part in Fig.1).  The whole volume becomes the minimum when the ring is closed. This behavior 

mimics the real alveolar defamation during respiratory cycle.  

 

3. Origami alveolar duct  

The alveolar duct is an air duct whose wall is completely replaced by several alveoli. Therefore, the origami 

duct is generated by connecting single origami alveoli in 3D space (left in Fig 2). Branching and space-filling duct 

system is generated by connecting multiple duct  units (right in Fig 2). 

      

       Fig.1  Single alveolar model.                              Fig.2  Alveolar duct model              
                                       
3. Conclusions 

My 4D alveolar model in computer had been neglected for several years, because it was inconsistent with 
conventional respiratory physiology and pathophysiology. Owing to the origami modelling, novel 
understandings for alveolar structure and function are spreading in medical people.  Seeing is believing. I 
dare say “Making is convincing”. 
 
Reference 

[1] Kitaoka H, Nieman GF, Fujino Y, Carney D, DiRocco J, Kawase I. A 4-dimensional model of the alveolar 

structure. J Physiol. Sci. 57: 175-185, 2007. 

[2] Kitaoka, H. A 4D model generator of the human lung. Forma  26: 19-24, 2011. 
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Formation of 3D co-culture microstructures  
using MEMS and Origami folding techniques 

Kaori Kuribayashi-Shigetomi and He Qian 
1Institute for Advanced Study of Mathematical Science, Meiji University, Japan 

 
1. Introduction 
Interactions between different kinds of cells play an extremely important role for cell functions and proliferation [1, 2]. 
Recently, many methods to produce 3D co-culture structures have been developed [3, 4], however, they are complicated, 
and the shapes of the 3D structures are restricted. We have developed a method to produce 3D cell-laden microstructure 
which formatted by cell traction force as the motive power [5]. This technique solved the above problems. It is easy and 
rapid to format and the shape can be changed simply. Our previous results observed by confocal microscope showed a 
hollow inside of dodecahedron 3D microstructure after folding. Therefore, it is possible to culture other kinds of cells in 
the hollow and create 3D co-culture microstructures. 
2. Method of forming 3D co-culture microstructures  
Cells were cultured the micro-sized plates that was fabricated on a glass substrate by a standard lithography technique 
of micro electro mechanical systems (MEMS). In order to make sure that the cells will only stay on the microplates, 
2-methacryloyloxyethyl phosphorylcholine was (MPC) coted on the substrate (Fig. 1). In this research, we use 3T3 and 
HepG2 cells to form the 3D co-culture microstructures. This method for cells culture is the same as conversional 2D 
culture without any other complicate processes. After these processes, alginate lyase was applied to remove alginate that 
was a sacrificial layer (Fig. 1), and the microplates were folded to format the 3D co-culture microstructures because of 
the traction forces of 3T3 cells. Finally, the location of 3T3 and HepG2 cells was determined.         
3. Results 
We successfully formed the 3D microstructure and co-culture of 3T3 and HepG2 cells. HepG2 cells located in the 
central of microstructure were surrounded by 3T3 cells which distributed in the periphery (Fig 2). The folding time 
can be controlled by using alginate comparing with using gelatin in previous research [5], and a number of 3D 
microstructures can be folded at one time during 1 to 2 minutes.  

The 3D co-culture HepG2 and 3T3 cells system can be easily acquired by applying microplates formatted 3D 
cell-laden microstructures. And the specific hepatic genes and the drug metabolism will be detected for investigation of 
function and response of co-culture microstructure.  
Acknowledgments 
The authors are grateful to Takahiro Okajima for his useful discussions and Kazuhiko Ishihara for porviding MPC 
polymers. This work was supported by JSPS KAKENHI Grant-in Aid for Scientific Research (B), Grant Number 
26286030. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Reference 
[1] Shimaoka S, Nakamura T and Ichihara A, Exp Cell Res, 172(1) (1987), 228-242. 
[2] Tsuda Y, Kikuchi A, Yamato M and et al, Biochem Biophys Res Commun, 348(3) (2006), 937-944.  
[3] Matsunaga YT, Morimoto Y and Takeuchi S, Adv Mater, 23(12) (2011), H90-94 
[4] Yamada M, Utoh R and Ohashi K, Biomaterials, 33(33) (2012), 8304-8315 
[5] Kuribayashi-Shigetomi K, Onoe H and Takeuchi S, PLoS One. 7(12) (2012), e51085 
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Development of a Paper-based Rapid Prototyping System  
for Orthopaedic Surgical Planning     

Luis DIAGO 1, 
1Meiji Institute for Advanced Study of Mathematical Sciences, Japan 

 
1. Introduction 

3D printing or rapid prototyping (RP) has emerged as a revolutionary technique that overcomes the limitations 
produced by the use of flat screens and 2D drawings for the visualization of three-dimensional (3D) imaging data 
by producing graspable 3D objects which can be applied for surgical planning, training, prosthetics and related 
applications. 3D printing may be costly but in complicated surgical cases, additional costs of RP may be 
compensated by reduced operating times and higher success rate of the surgical procedure. The time needed for 
producing a 3D object limits its use in surgery to elective cases and makes it unsuitable for emergency cases. In 
order to overcome above limitations we have been working on the development of a new RP system that 
incorporates a new origami-pattern generation algorithm to produce paper-based copies of physical objects [1]. 
Figure 1 shows the general flowchart of our current research that deals with two problems: 1) the generation of 3D 
digital models from X-ray images [2] and 2) the development of a paper-folding robot by direct teaching from 
experiments [3] in order to speedup the creation of paper-models by proposed folding machines [4]. 

 

Figure 1: General flowchart of the proposed research     

2. Bone Shape Modeling and Paper-based Construction by “Norigami” Folding Machines. 
Figure 2 (left) shows a comparison of a model of a Tibia constructed from X-ray images using [2], printed with Cube 

3D printer and proposed method [1]. Three folding trajectories in Fig.2 (middle) are used to create a round object by 

proposed “norigami” folding machines (right). Feed-forward control is needed to reduce the error of the machines. 

Two neural networks (i.e. ADALINE and proposed HNN) are compared to follow the trajectories. HNN is faster and 

average error in the folding position by HNN is 2 times smaller than ADALINE’s error (~2.6mm vs ~5.6mm).  

 

 

 

 

 

Figure 2: Models of a right tibia and “Norigami” folding machines with folding trajectories for a round object     
References 
[1] B. Yu, M. Savchenko, J. Shinoda, L. Diago, I. Hagiwara and V. Savchenko “Producing Physical Copies of the Digital Models via Generating 2D Patterns for “Origami 

3D Printer” system”, Journal of Advanced Simulation in Science and Engineering, Vol. 3 (2016) No. 1 p. 58-77.  

[2] V. Karade and B. Ravi, “3D femur model reconstruction from biplane X-ray images: a novel method based on Laplacian surface deformation” Int J CARS Vol.10 

(2015) No. 4 p. 473-485. 

[3] Y. Kihara and Y. Yokokohji, Skill Transfer from Human to Robot by Direct Teaching and Task Sharing: A Case of Study with Origami Folding Task” In 11th IFAC 

Symposium on Analysis, Design, and Evaluation of Human-Machine Systems Vol. 11 (2010) p. 454-459 

[4] J. Romero, L. Diago, J.Shinoda, C. Nara and I. Hagiwara. “Norigami Folding Machines for Complex 3D Shapes” In Proc. ASME IDETC/CIE (2016) (in Press)  
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Maekawa Jun1 
1Origami Artist 

 
1. Introduction 
Dividing a cube in various ways to see diverse sections is an effective exercise for artistic design. It has been 
practiced by some educational programs including Bauhaus in German and Kuwasawa Design School in 
Japan, and has resulted in some art works including "Wine Cube" by Hiroshi Tomura[1]. It is also a useful 
educational material for Mathematics. The following geometric fact is well-know: 
When a cube is divided with a plane, the section can be a square, an equilateral triangle, a rhombus, a 
rectangle, a regular hexagon, and so on, but cannot be a regular pentagon. 

2. Origami works 
Some origami works have also designed on cube division, including: 

 
Figure 2-1.                      Figure 2-2.                          Figure 2-3. 

Cube with a regular hexagon [2].     Cube with a hyperbolic paraboloid[3].    Cube trisection (modular origami)[4]. 

3. An application 
While studying cube division origami models, the author came up with an idea that does not have direct 
connection with origami techniques. 
Basic measuring spoons for cooking have volumes 15cc, 10cc, and 5cc, which are 1/2, 1/3, and 1/6 of 30cc, 
respectively. Meanwhile, a cube can be divided in 1/3 or 1/6 easily because, as we have seen in 2-3, it has 
rotational symmetry of order 3. Noticed these facts, the author devised a spoon that can measure three 
different volumes by rotating three axes. 

 
Figure 3-1. Large, medium, and small integrated measuring spoon 

 
References 
[1]Tomura H.  “Kihon Keitai no Kozo”, Bijutsu Shuppan Sha, 1974 
[2]Hull T., “Origami3 Third International Meeting of Origami Science, Mathematics, and Education”, A K Peters, 

2002  

[3]Maekawa J. , “Oru Kikagaku(Folding Geometry)”, Nippoon Hyoron Sha, 2016  
[4]Maekawa J. , “Otte Tanoshimu Origami Seminar”, Sugaku Seminar, Vo;. 55 No. 5(2016), pp. 88-89 
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Tilt-up concrete dome skeleton construction by 
Rotational Erection System (RES) 

Yoshinobu Miyamoto1, 
1Aichi Institute of Technology, Japan 

1. Introduction 
We propose a novel construction method for dome skeleton using Tilt-up concrete and Rotational Erection 
System (RES)[1]. The construction procedures are 1) setting the edge form and rebar on the level floor pad, 
2) casting structural concrete, 3) hoisting up the hub on the temporary support, 4) tilting-up the arms and 
fastening them to the hub. We studied the two types of rigid frame configuration with a) intersecting arms 
and b) dual layer arms and one type of cable-stay configuration (Fig. 2) [2,3]. We investigated a modification 
to RES for rigid folding that would be applicable to the alternative jack-up erection method with fully linked 
elements. 

2. Three types 
We apply RES geometry to 
determine the efficient layout of the 
concrete forms on the floor slab (Fig. 
1). The interactive parametric design 
tool written in GeoGebra was used 
to find the arm profile appropriate 
for the concrete structure.  

3. Structural analysis 
FEM Structural analysis showed 
30m span domes in the three 
configurations are feasible with the 
conventional concrete materials. The 
seismic load C0=0.5 was applied as 
the critical condition (Fig. 3).  

4. Rigid foldable RES 
Adding two hinges for each arm at the hub make RES rigid foldable (Fig. 4). 

5. Conclusions 
Taking advantage of existing know-how of tilt-up concrete method, RES could achieve the visual effect and 
special impression that was never done with tilt-up concrete. Further parametric optimization and refinement 
in the construction procedure would find a competitive position among the existing construction methods. 

Reference 
[1] Miyamoto Y., Rotational Erection System (RES): Origami Extended with Cuts, in Origami6 II: 
Technology Art, Education, Miura K (ed.), AMS, 2015, 537-544. 
[2] [3] Miyamoto Y., Itoh T., Harada H., Tilt-up concrete dome skeleton construction by Rotational Erection 
System (RES), part 1 & 2, Proceedings of the IASS Annual Symposium 2016. 

Fig. 2 Dome types. Fig. 3 Displacements. Fig. 1 Patterns. 

types. 

Fig. 4 Rigid folding sequence (RES n=3, α= 60°, β= 90°). 

Intersecting arms 

Dual layer arms 

Cable stayed arms 
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       An iterative simulation-based design of the origami-     
performing robot 

                                                                          
                                                                                                           Maria Savchenko  

                                    Meiji Institute for Advanced Study of Mathematical Sciences 

                                                                                               Abstract 

The robot design based on experiment only is difficult, expensive, and time-consuming. Then the 
simulation approach based on software becomes the main option in the real-world related with a 
robotic activity for creating basis for hardware design. We present a study: the iterative simulation-
based design of the origami-performing robot’s hardware. The basic premise underlying the study is 
that each folding operation of the crease patterns of origami is considered as a function of the 
mechanical systems such as a robot. The aim of the research is to manipulate the foldable objects such 
as a sheet of paper in the simulation environment in the relation with understanding the robot design 
instead of creating the real robotic prototypes. In this case, dynamic and kinematic behaviour of the 
robot arms in the formation of origami models can be simulated by using LS-DYNA software. In 
simulating, we consider two types of crease patterns: i) in ordinary paper folding; ii) in the thickened 
paper folding. In the both cases the goal of the simulation is to form the 3D origami models. Fig.1 
illustrates the design process from the schematic stage to the final design.  Fig.2 shows forming a 
bending crease and the 3D shapes by the robot end-effectors in the finite element models of crease 
patterns.   

 

 

 

 

 

                                                                         

                                                                     

 

Fig.1 Design process: schematic stage- simulating - the final design stage 

 

 
                                                    

                             Fig.2 Results of the simulation: ordinary paper and carton models 

 
The 3D origami simulation  by 
  using the FEM in LS-DYNA  

Holder 

Gripper

s 
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Some observation of regular polygons in origami paper  
Haruo Hosoya 

 Department of Information Sciences, Ochanomizu University (Emeritus), Japan 

 
1. Introduction 
The standard size of origami paper in Japan is 15cm×15cm, from which I have found several interesting 
ways for cutting out regular polygons. Although metric ruler and scissors are necessary for these operations, 
I believe that these findings are helpful not only for mathematics education to junior high school students but 
also for popularization of origami to the public. In this talk the secret of “Nana-kin-san Silhouette Puzzle 
(Golden Heptet Triangles)” will also be disclosed, which is motivated from the pair of golden triangles and 
was recently designed by me.   .  
2. Patterns  

2 cm

15 cm

4 cm

4 cm

(4.019)

152 + 42 = 241 =15.524cm

112 ×2 = 242 =15.556cm
132 + 7.52 =15.008cm

   

44 4462

2× 442 = 62.23

    
           Fig. 1.  Largest triangles in origami.                  Fig. 2.  Largest octagons in origami. 
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    Fig. 3.  Relation among golden triangles,                Fig. 4.  Golden Heptet Triangles. 

           regular pentagon and square. 

          

References 
[1] H. Hosoya, Seven Secrets of Triangles (in Japanese), Blue Backs, B-1823, Kodansha, Tokyo, 2013.  

[2] Golden Heptet Triangles, Manufactured by Image Missions Inc., Shizuoka, 2015. 
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Paper Models of Projection of 4-dimensional Regular Polytopes 
                 Koji Miyazaki 

     Professor Emeritus, Kyoto University, Doctor of Engineering 
 

Abstract 
 In this paper, the real shape of each face of orthogonal 

projection into 3-space of 4-dimensional regular 
polytopes are shown to make their Origami-like 
handmade models. The result will serve to flourish the 
world of paper models which is active in 4-space. 

 
Unique point of this paper  

There are 6-kinds of regular 4-polytopes: the 5-, 8-, 
16-, 24-, 120-, and 600-cell (Fig.1, from top to bottom 
rows). They are composed of 3-dimensional regular 
polyhedra and can be orthogonally projected into 3-space 
in typical 4 types: vertex-, edge-, face- and cell-centered 
projections (Fig.1, from left to right column).              

In spite of such variety, merely some of simple 
vertex- or cell-centered projections are usually adopted 
as projections of regular 4-polytopes because of 
usefulness for easy understanding and manufacturing. 

To make innovations such present conditions, in this 
paper, the real shape of each face which composes all 
projections shown in Fig.1 are represented. 
 
Conclusion 

The real shape of each face of projections shown in 
Fig.1 coincides with any of the numbered plans or 
elevations of rotational 3-dimensional regular 
polyhedra as is shown in Fig.2. Each polyhedra 
composes any of regular 4-polytopes. 

Fig.3 shows Origami-models representing orthogonal 
projections of regular 4-polytopes constructed by the real 
shapes shown in Fig.2. Each is composed of small 
flattened regular polyhedra shown below.  

Fig.1 

Fig.2 

Fig.3 
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Computing Area, Circumradius, and their Integrated Formulae  
for Cyclic Polygons 

Shuichi Moritsugu1, 
1Faculty of Library, Information and Media Science, University of Tsukuba, Japan 

 
1. Introduction 
In this study, we consider a classic problem in Euclidean geometry for cyclic polygons; that is, 𝑛𝑛-gons 
inscribed in a circle, given by the length of sides 𝑎𝑎1,… , 𝑎𝑎𝑛𝑛. In particular, we focus on the relation between 
the area 𝑆𝑆 and the circumradius 𝑅𝑅 of cyclic pentagons and hexagons. 

The classic results derived by Heron in the 1st century gives the formulae for triangles. For cyclic 
quadrilaterals, Brahmagupta’s formula was obtained in the 7th century. Nowadays, we can rewrite the 
formulae for 𝑛𝑛 = 3,4 into unified and simplified forms as follows, using elementary symmetric functions 
𝑠𝑠1 = 𝑎𝑎12 + 𝑎𝑎22 + 𝑎𝑎32 + 𝑎𝑎42, … , 𝑠𝑠4 = 𝑎𝑎12𝑎𝑎22𝑎𝑎32𝑎𝑎42: 

Area (𝑥𝑥 = (4𝑆𝑆)2):   𝑥𝑥 − (−𝑠𝑠12 + 4𝑠𝑠2 + 𝜀𝜀 ∙ 8√𝑠𝑠4) = 0 
Circumradius (𝑦𝑦 = 𝑅𝑅2):  (−𝑠𝑠12 + 4𝑠𝑠2 + 𝜀𝜀 ∙ 8√𝑠𝑠4)𝑦𝑦 − (𝑠𝑠3 + 𝜀𝜀 ∙ 𝑠𝑠1√𝑠𝑠4) = 0 
Integrated (𝑍𝑍 = (4𝑆𝑆𝑆𝑆)2):  𝑍𝑍 − (𝑠𝑠3 + 𝜀𝜀 ∙ 𝑠𝑠1√𝑠𝑠4) = 0 

In these expressions, ε is called crossing parity with 0 for a triangle, 1 for a convex quadrilateral, and 
−1 for a non-convex quadrilateral. Our goal is the computation of these types’ formulae for polygons 𝑛𝑛 ≥ 5, 
which remained unsolvable for 1,300 years since Brahmagupta.  
 

n Area formula Circumradius formula Integrated formula 

5 Robbins (1994) Takebe (1683) Moritsugu (2014) 
  Pech (2006) Izeki (1690) Moritsugu (2015) 
  Moritsugu (2015) Robbins (1994)   
    Pech (2006)   

6 Robbins (1994) Moritsugu (2011, 2016) Moritsugu (2015) 
  Moritsugu (2015)     

7 Maley et al. (2005) Moritsugu (2011, 2016) (unsolved) 
8 Maley et al. (2005) (unsolved) (unsolved) 

      Fig.1 A cyclic pentagon                      Table 1 Contributions to each formula 

2. Algorithms and results 
We applied elimination algorithms by resultant using computer algebra systems. Table 1 shows the recent 
results. We should note that old Japanese mathematicians in the 17th century had already solved circumradius 
problem for pentagons based on the theory of resultants. Meanwhile, the area formula discovered by Robbins 
in 1994 was a great breakthrough. In contrast, the author’s main contributions are the following computation:  

(1) The area formulae (𝑛𝑛 = 5,6) by only simple elimination method  
(2) The circumradius formulae (𝑛𝑛 = 6,7) and their compact expressions by elementary symmetric functions 
(3) The integrated formulae (𝑛𝑛 = 5,6) which have been “missing” since Brahmagupta 

To our best knowledge, we believe that these results are quite original. 
References 
[1] Moritsugu, S., Computing Explicit Formulae for the Radius of Cyclic Hexagons and Heptagons, Bulletin of 

JSSAC, Vol.18, No.1, pp.3-9, 2011.  
[2] Moritsugu, S., Integrated Circumradius and Area Formulae for Cyclic Pentagons and Heptagons, ADG 2014, 

Lecture Notes in Artificial Intelligence, Vol.9201, pp.94-107, 2015. 
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On the Enumeration and Counting of Developments of Polyhedra 
Takashi Horiyama1 

1 y, Japan 

 
1. Introduction 
A development of a polyhedron is a simple polygon obtained by cutting along edges of the polyhedron and 
unfolding it into a plane. The cut edges of a development of a polyhedron form a spanning tree of the 
1-skeleton (i.e., the graph formed by the vertices and the edges) of the polyhedron, and vice versa. In this 
talk, we discuss the techniques for enumerating developments of polyhedra and counting the number of 
developments. 
2. Enumeration of developments 
We use ZDDs (zero-suppressed binary decision diagrams) for enumerating developments of polyhedra (i.e., 
spanning trees of the 1-skeletons) [1, 2]. A ZDD is a directed acyclic graph representing a family of sets. Fig. 
1 is an example of a ZDD representing {{e1, e3, e5}, {e1, e4}, {e2, e3, e4}, {e2, e5}}. Each path from the 
root node to the 1-node (the sink node labeled “1”) corresponds to a set. The paths e1-e3-e5-1 and e1-e3-e4-1 
in Fig. 1 respectively correspond to {e1, e3, e5} and {e1, e4}. Note that the labels of the nodes with dotted 
edges are ignored. Figs. 2 and 3 illustrate partial lists of the developments of a dodecahedron and an 
icosahedron, respectively. 

 
3. Counting the number of developments 
The easiest way for counting the number of developments of a polyhedron is to enumerate those and count 
the number of obtained ones. By utilizing the group theory, however, we can count the number of 
developments without enumerating them [3]. In this talk, we will give the number of developments of 
Archimedian solids. 
Reference 
[1] T. Horiyama, and W. Shoji. Edge-Developments of Platonic Solids Never Overlap, In Proc. of the 23rd 
Canadian Conference on Computational Geometry (CCCG 2011), pp. 65-70, 2011. 
[2] J. Kawahara, T. Inoue, H. Iwashita, and S. Minato. Frontier-based Search for Enumerating All Constrained 
Subgraphs with Compressed Representation, Technical Report TCS-TR-A-14-76, Division of Computer Science, 
Hokkaido University, 2014. 
[3] T. Horiyama, and W. Shoji. The Number of Different Unfoldings of Polyhedra, In Proc. of the 24th 
International Symposium on Algorithms and Computation (ISAAC 2013), Lecture Notes in Computer Science, 
vol. 8283, pp. 623-633, 2013. 

Fig. 2 Partial list of the developments of a dodecahedron.   

Fig. 3 Partial list of the developments of an icosahedron. Fig. 1 ZDD.   
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Modeling by the infinite fold 
Tomoko Fuse 

Origami Artist, Independent 
 

1. Introduction 
Folding a sheet of paper sometimes results in unintentional discovery of an interesting shape, 

sometimes in finding a rhythm of folds. Modeling by folding paper is more constrained than 

other genres of art. That is the reason why the found shapes are usually geometrical. 

As examples of such findings, the author reports some works with the infinite fold, where 

folding patterns can be repeated endlessly: two-dimensional tessellation pieces and 

three-dimensional accordion-like works. 

2. Two-dimensional works 

Most of origami pieces involve sequences of bisection. The most common technique is dividing 

into smaller parts (figure 1). In tessellation, the basic fold is the square twist (figure 2). 

Figure 1.[1]      Figure 2.  
3. Three-dimensional works 

Bisection is also the major technique in three-dimensional models. The author presents five 

types of pieces with their variations that can be closed flat (figure 3) (figure 4). 

Figure 3.   Figure 4.  

4. Conclusion 

The infinite fold has various types, both two- and three-dimensional. Its pieces have shapes that 

emerge from the rules of origami, not that represent known shapes or nature. The most 

important thing is that a complete world can be perceived in the actual folding process. 

 

Reference [1] Shuzo Fujimoto, Ajisai-ori, Seibundo Shinkosha, December 2010. 
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Folding of Deployable Membrane Space Structures 
Hiroshi Furuya1, 

1Department of Mechanical Engineering, Tokyo Institute of Technology, Japan 

 
1. Introduction 
The folding/deployment techniques in space engineering are significant to realize satellites, space antennas, 
and space stations, because the limited volume and weight of capacity for launching the equipment by rocket 
as well as the increasing size of it due to the complex space missions. As the results, to fold structures on the 
ground and to deploy easily in space environment are requested. Recently, several deployable membrane 
space structures have been proposed and constructed, for de-orbiting satellites within 25 years after the 
completion of their primary missions. Furthermore, membrane structures will enable innovative missions 
including solar sails, solar arrays, phased array antennas, and sun shields. This paper introduces 
boom-membrane integrated space structures for small satellites.  
2. Boom-membrane integrated space structures 
For small satellite, the retraction size and the easy deployment with small deployment mechanisms are 
important to design the deployable membrane. We have proposed the rotationally skew fold (Fig.1). This 
folding pattern enables the membrane to be stowed in a desired height of fold pitch without increasing the number 
of tangential fold lines. The deployment of the membrane is performed by the self-deployable boom in Fig.2. 
Finally the boom-membrane integrated structures are configured as shown in Fig.3. The deployment procedures 
are indicated in Fig.4. 
 
 
 
 
 
 
 
 
Fig.1 Rotationally skew fold.[1]    Fig.2 Triaxially woven CFRP       Fig.3 Deployed configuration 
 

 
Fig.3 Deployment procedures with cable suspension system. 

Reference 
[1]Furuya, H. and Masuoka, T., Concept of Rotationally Skew Fold Membrane For Spinning Solar Sail, 
CD-ROM Proc. 55th International Astronautical Congress, IAC-04-I.1.05, Vancouver, (2004), pp.1-5. 
[2]Furuya, H, Mori, O., Sawada, H., Okuizum, N., Shirasawa, Y. Natori, M., Miyazaki, Y., Matunaga,S., 
"Manufacturing and Folding of Solar Sail "IKAROS"," 12th AIAAGossamer Systems Forum, Denver, 
AIAA-2011-1967, (2011), pp.1-4. 
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Enumeration of formal crease patterns in the square/diagonal grid and 
verification of their flat-foldability 

 
Jun Mitani1, Yoshihisa MATSUKAWA1, Yohei YAMAMOTO2 

1University of Tsukuba, 2GIKEN, LTD. 

 
1. Introduction 
The square/diagonal grid (Fig. 1(a)), which consists of arrayed squares and their diagonals, is commonly 
used not only in basic origami design but also in the basic structure of recent self-folding origami robots[1]. 
However, the number of shapes made by folding lines of the subset of the grid pattern is not known as far as 
we have surveyed. 
2. Locally flat-foldable crease patterns and their folded shapes 
We enumerated the number of locally flat-foldable crease patterns[2] and their folded shapes without 
considering mountain/valley parity. The numbers of crease patterns and the folded shapes in 2x2, 3x3, and 
4x4 gird patterns we enumerated are: {116/27}, {58,530/ 366}, and {259,650,300/13,452} respectively. 
We verified that all the shapes are realizable, i.e. actually flat-foldable with a physical sheet without 
self-intersections. At the same time, we found some locally flat-foldable crease patterns that are impossible 
to be folded. 

3. Conclusions 
We developed an application to search for a crease pattern that is folded into a shape specified by the user. 
By using this application, we found the shapes of the alphabet and numbers as shown in Fig. 1(b). In addition, 
we concluded that the two crease patterns shown in Fig. 1(c) are the smallest and simplest non-flat-foldable 
ones.  

         
(a)                             (b)                                  (c) 

Fig.1 (a) 2×2, 3×3, and 4×4 square/diagonal grid patterns. (b) Examples of folded shapes and their crease patterns 

in the 4x4 grid pattern. (c) The simplest and smallest impossible-to-flat-fold crease patterns. 
 
Reference 
[1] E. Hawkes, B. An, N. M. Benbernou, H. Tanaka, S. Kim, E. D. Demaine, D. Rus, R. J. Wood, 

“Programmable matter by fold-ing”, Proceedings of the National Acade-my of Sciences, 2010. 

[2] Thomas C. Hull, “The Combinatorics of Flat Folds: A Survey”, Origami3: The Third International 
Meeting of Origami Science, Mathematics, and Education, 2002. 
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Folding Patterns and Deployment Processes in  
Morphological Changes of Insects 

 
Naoko Kishimoto 

Setsunan University, Japan 
 
 

Insects need several ecdysis processes, since they have external skeleton.  
Especially through eclosion processes, they deploy thin membrane structures from 

highly packed situation. 
Influx of body fluid into branching veins induces deployment of membrane wings. 
We show eclosion processes of some insects and folding patterns of membranes inside 

their sheaths. 
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Origami Based Responsive System Proposal for a Building Surface 

 
 

Prof.Dr.Arzu Gönenç Sorguç, Özlem Çavuş, Fatih Küçüksubaşı, Serkan Ülgen, Fırat 
Özgenel, Müge Kruşa 

 
METU Department of Architecture 

 
 
Introduction 
 
Architecture is not just a response to the needs but is always a manifestation of the 
available technology of its age. Today both these needs and enabling technologies 
are increasing symmetrically and become more and more complex. In addition to 
these advents, increasing number of environmental problems and their severity 
force architecture to investigate new and innovative design approaches, new 
challenging forms and materials as well as new construction /fabrication 
/manufacturing technologies.  
 
Responsiveness in architecture either to soft (social, economic, cultural etc.) or to 
hard (light, energy, earthquake natural disasters etc.) conditions is always a design 
goal. In present, computational design approaches related parametric/generative 
models together with developments in electronics, mechatronics, control systems 
allow architects to re-explore responsiveness with the use of many interesting 
kinetic structures.   
 
The Design of the Component 
 
Responsive system design in architecture is a culmination of computational design 
knowledge and knowledge on dynamics and related enabling technologies. Thus 
teaching and learning responsive architecture in the present context necessitates 
modifying curriculum as well.  
 
In this study, design and development of a kinetic surface based on origami is 
presented.  Origami is always a source of inspiration for architects. It is possible to 
see many building forms derived from origami folding.  
 
However it is still novel to integrate real kinetic building structures based on origami 
due to material, design and/or kinetic constraints and their implementations. In the 
present study a kinetic component but also the space itself, which can be 
transformed and provide different ambient conditions is shown.  
 
In the design process, it is required developing a system to adopt different natural 
light conditions, various natural ventilation levels and possibility of having different 
volumetric relations.   
 

1/3
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The parametric/generative computational model is developed by using Grasshopper 
and the fabricated prototype is run by Ardunio responding to light and air movement. 
The basic design idea is shown in Figure 1.  The initial form is obtained by truncating 
the a simple nurb surface, than each surface is folded in two directions. 

 
Figure 1. Initial Design of the Component 
  
The design of the component is achieved in parametric environment as shown in 
Figure 2 

 
 
Figure 2. Parametric/Generative Model and the Resulting Component 
 

 
 
Figure 3. Final Component and the Details 
 
There are two different modes of deployment in each surface responding the need 
and the ambient conditions. Surface materials and textures are also determined 
accordingly.  
The prototype is shown in Figure 4. 
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Figure 4. Working Prototype 
 
Conclusion 
 
The parametric modelling toolls and computational design approaches re-value 
origami in design. Particularly the design of responsive systems and their kinetic 
mechanisms can easily be deciphered by using origami which provides an invaluable 
medium of design analysis for complex deployable responsive structures. 
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Optimizing Unfoldings of Convex Polyhedra 
 

Anna Lubiw 
(The University of Waterloo, Canada) 

 
 
It is an open problem whether every convex polyhedron has an edge unfolding, where we 
cut along its edges and unfold without overlap.  However, if we allow cuts through faces 
there are a number of known unfoldings, in particular, the star and source unfoldings and 
several generalizations of them.   
 
In this talk, I will survey the known unfolding methods and explore them from the 
perspective of optimizing various criteria: 
   - minimize the perimeter of the unfolding 
   - minimize the diameter or the bounding box of the unfolding 
   - maximize the minimum angle of the unfolding 
   - minimize the number of leaves of the cut tree of the unfolding (a zipper unfolding has 

two leaves)  
 
The talk will include many open problems. 
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Applications of cut locus and Intuitive geometry 
--continuous flattening of polyhedra-- 

Jin-ichi Itoh1, 
1Faculty of Education, Kumamoto University, Kumamoto, 860-8555, Japan  

j-itoh@kumamoto-u.ac.jp 

 
Cut locus is defined by Poincare in the beginning of 20 century, and studied long time in global differential 

geometry. In this talk, first we will review its history and recent results, a generalization of Jacobi’s last 
statements and fractal cut locus, and discuss several applications (for example, shortest path problem, 
unfolding of polyhedron, continuous flattening of polyhedron).  

 
Theorem (J.I., C.Nara & C.Vilcu). Every convex polyhedron has infinitely many continuous flat folding 

processes. 
 
It is proved by using cut locus and Alexandrov'e glueing theorem.   
                                                        
Next we will show several problems of Intuitive Geometry. ”Intuitive geometry” is the title of book written 

by Hilbert and Cohn-Vossen in the first half of 20 century. We will enjoy such kind of interestiong (amusing) 
geometric models made by 3D printer. 
 

       
           Continuous flattening of tetrahedron and cube made by thick panels   
 

     

Surfaces of constant width                          Rollable surface 

 

  

Reference 
[1]  Jin-ichi Itoh, Chie Nara & Costin Vilcu, Continuous flattening of convex polyhedral,  

In: Comuputational Geometry, LNCS 7579, 85-97, Springer, 2012. 
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Rigid Foldability and Self Foldability  
 

Tomohiro Tachi 
University of Tokyo, Japan 

 
 

Rigidly foldable origami structures are parallel mechanisms made of rigid plates and 
hinges, which is useful for the designs of deployable structures and self-folding systems 
in different scales. To design such transformable systems, we need to know if a given 
pattern forms a finite mechanism (rigid-foldability) and if the mechanism can be 
controlled to self-fold into desired states (self-foldability). Rigid-foldability and self-
foldability have an inherent hardness, especially when dealing with the singularity and 
the degeneracy. However, lots of interesting behaviors of origami patterns come from 
these wicked cases; for example, bifurcation at the singular state of origami can lead to 
reprogrammable folding patterns, and the degenerate constraints yield overconstrained 
mechanisms with high stiffness and flexibility. The speaker talks about design methods 
to exploit such unusual behavior of origami patterns and to control the self-folding 
behavior of rigid origami. 
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Quaternion expression of the condition for rigid origami  
Naohiko Watanabe1, 

1 National Institute of Technology, Gifu college, Japan 

 
Abstract 
The condition for rigid origami has been received significant interest from the standpoint of mathematics and 
engineering application. In the past research, the conditions that the combination of the motion velocities of 
dihedral angles 𝜌𝜌𝑖̇𝑖 to be satisfied has been derived in consideration of the condition of a circuit around a 
vertex with n crease lines, a series of facet angles 𝜃𝜃01, 𝜃𝜃12, ⋯ , 𝜃𝜃𝑛𝑛−1𝑛𝑛 and dihedral angles 𝜌𝜌1, 𝜌𝜌2, ⋯ , 𝜌𝜌𝑛𝑛 
with using rotation matrix 𝝌𝝌𝒊𝒊 as described in eq.(1).

𝝌𝝌𝒏𝒏𝝌𝝌𝒏𝒏−𝟏𝟏 ⋯ 𝝌𝝌𝟏𝟏 = 𝑰𝑰 (1) 
In this study, the condition for rigid origami is derived by using a quaternion which can make effective 
expression of rotational operation. Use of the quaternion 𝑞𝑞𝑖̃𝑖 including the information of a series of unit 
vectors of crease lines 𝒏𝒏𝟏𝟏, 𝒏𝒏𝟐𝟐, ⋯ 𝒏𝒏𝒏𝒏 and dihedral angles 𝜌𝜌1, 𝜌𝜌2, ⋯ 𝜌𝜌𝑛𝑛around a vertex make a possible to 
express the constraint condition of a circuit around a vertex as follows. 

𝑞̃𝑞𝑛𝑛 ⋯ 𝑞̃𝑞2𝑞̃𝑞1𝒓𝒓𝑞̃𝑞∗
1𝑞̃𝑞∗

2 ⋯ 𝑞̃𝑞∗
𝑛𝑛 = 𝒓𝒓 (2) 

Here, 𝑞̃𝑞𝑖𝑖 = (cos 𝜌𝜌𝑖𝑖
2 , 𝒏𝒏𝒊𝒊 sin 𝜌𝜌𝑖𝑖

2 ), 𝑞̃𝑞𝑖𝑖
∗ = (cos 𝜌𝜌𝑖𝑖

2 , − 𝒏𝒏𝒊𝒊 sin 𝜌𝜌𝑖𝑖
2 ) (3) 

In consideration that every quaternions 𝑞𝑞𝑖̃𝑖 at the time t=t+dt also satisfy eq.(2), it can be expressed as 
follows. 

(𝑞̃𝑞𝑛𝑛(𝑡𝑡) + 𝑑𝑑𝑞̃𝑞𝑛𝑛
𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑) ⋯ (𝑞̃𝑞1(𝑡𝑡) + 𝑑𝑑𝑞̃𝑞1

𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑) 
 

= (𝑞̃𝑞𝑛𝑛(𝑡𝑡) ⋯ 𝑞̃𝑞1(𝑡𝑡)) + (𝑑𝑑𝑞̃𝑞𝑛𝑛

𝑑𝑑𝑑𝑑
𝑞̃𝑞𝑛𝑛−1(𝑡𝑡) ⋯ 𝑞̃𝑞1(𝑡𝑡) + 𝑞̃𝑞𝑛𝑛(𝑡𝑡) 𝑑𝑑𝑞̃𝑞𝑛𝑛−1

𝑑𝑑𝑑𝑑
⋯ 𝑞̃𝑞1(𝑡𝑡) + ⋯ ) 𝑑𝑑𝑑𝑑 + 𝑜𝑜(𝛿𝛿𝑞𝑞2) = (1, 𝟎𝟎) 

 
 

(4) 
Since the term (A) is equal to (1,0), the term (B) is to be equal to (0,0). 
About the term (B), by using derivative of 𝑞̃𝑞𝑖𝑖 with respect to 𝜌𝜌𝑖𝑖 and 𝒏𝒏𝑖𝑖 as shown in eq.(5), it can be derived 
the condition that the motion velocity of dihedral angles 𝜌𝜌𝑖̇𝑖 and direction of crease lines 𝒏𝒏𝒊𝒊̇  should satisfy. 
The result of the differentiation with respect to the variable 𝜌𝜌𝑖𝑖  is described as shown eq.(6). This condition 
corresponds to the geometric characteristic that “the sum of the weighted fold line vectors is equal to zero.” 

𝑑𝑑𝑞̃𝑞𝑖𝑖
𝑑𝑑𝑑𝑑 = (𝜕𝜕𝑞̃𝑞𝑖𝑖

𝜕𝜕𝜌𝜌𝑖𝑖
𝜌𝜌𝑖̇𝑖 + 𝜕𝜕𝑞̃𝑞𝑖𝑖

𝜕𝜕𝒏𝒏𝑖𝑖
𝒏𝒏𝑖𝑖̇ ) = (𝒏𝒏𝒊𝒊𝜌𝜌𝑖̇𝑖𝑞𝑞𝑖̃𝑖 + (0, 𝒏𝒏𝑖𝑖̇ sin 𝜌𝜌𝑖𝑖

2 )) 
 
(5) 

 ∑ 𝒏𝒏𝒊𝒊𝜌𝜌𝑖̇𝑖 = 𝟎𝟎 
 
(6) 
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1. Introduction 
Van Iterson’s bifurcation diagram for disk packings is a fundamental tool in the geometric study of spiral 
phyllotaxis.  He studied the cylindrical model with linear lattices, the centric model in the plane, and a cusp 
model on the cone in 1907.  The cylindrical model is popular recently, as it has PSL(2,Z) symmetry.  It is 
known that the bifurcation diagram of disk packings on linear lattices is a dual graph of the bifurcation 
diagram of Voronoi tilings on the same linear lattices [1].  Here we show the duality between the bifurcation 
diagrams of disk packings and Voronoi tilings in the centric model, on logarithmic spiral lattices [2,3].   
2. Bounded distance with multiplicative symmetry. 
A logarithmic spiral lattice   Zj

jz   has a single generator Cz .  Fig.1 is an example with disk 
parastichy numbers 3, 5, and 8, where the dashed lines show the Voronoi tiling for  .  In van Iterson’s 
model, the radius of each disk || jzR  is proportional to || jz .  Our result is that the coefficient 
R defines a bounded distance function in the plane, |)||/(|||),( wzwzwzd  .  

Fig.1 Disk packing and Voronoi tiling          Fig.2 Bifurcation diagram of Voronoi tilings (dashed lines)  
on a logarithmic spiral.                         and van Iterson’s diagram 

3. Disk parastichy number, Voronoi parastichy number, and continued fractions 
In the phyllotaxis theory, the number of spirals is called a parastichy number.  We show that the bifurcation 
of Voronoi tilings is written by an equation of the packing distance d .  We show that, if the generator z  
is fixed, a disk parastichy number is also a Voronoi parastichy number.  The continued fraction expansion of 
the divergence angle 2/)arg(z plays an important role in the proof.  This gives the duality of the 
bifurcation digrams, and a rigorous proof that van Iterson’s diagram in the centric model is connected and 
simply connected, with the Farey tree structure.  
Reference 
[1] Hellwig, H., and Neukirchner, T., Phyllotaxis, Die mathematische Beschreibung und Modellierung von 
Blattstellungsmustern, Mathematische Semesterberichte 57 (2010), 17-56.  
[2]Yamagishi, Y., Sushida, T., and Hizume A., Voronoi spiral tilings, Nonlinearity 28 (2015) 1077-1102. 

[3] Yamagishi, Y., and Sushida, T., Spiral disk packings, submitted. 
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