Collective Motion of Self-Propelled Objects: From Molecule to Colloid

Masaki Sano

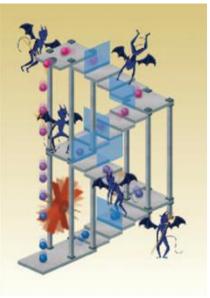
Department of Physics The University of Tokyo

Non-equilibrium Phase Transition & Turbulence



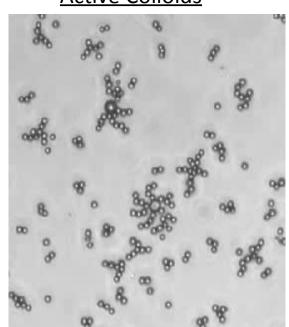
<u>Information Thermodynamics</u>

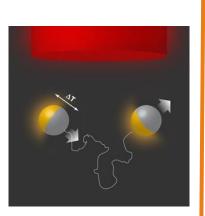
$$\langle e^{(\Delta F - W)/k_B T} \rangle = \gamma$$



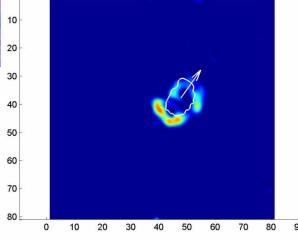
Non-equilibrium Statisical Mechanics

Active Colloids





Cell Motility



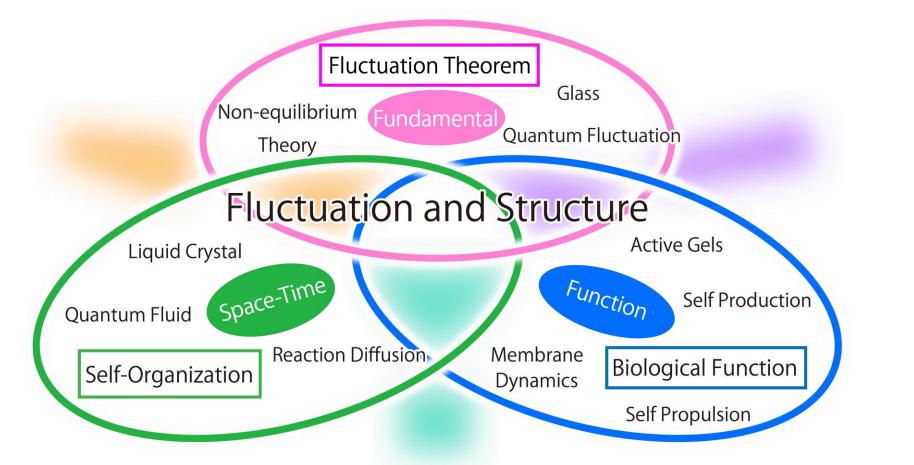
Active Soft Matter

Traction Force Microscopy

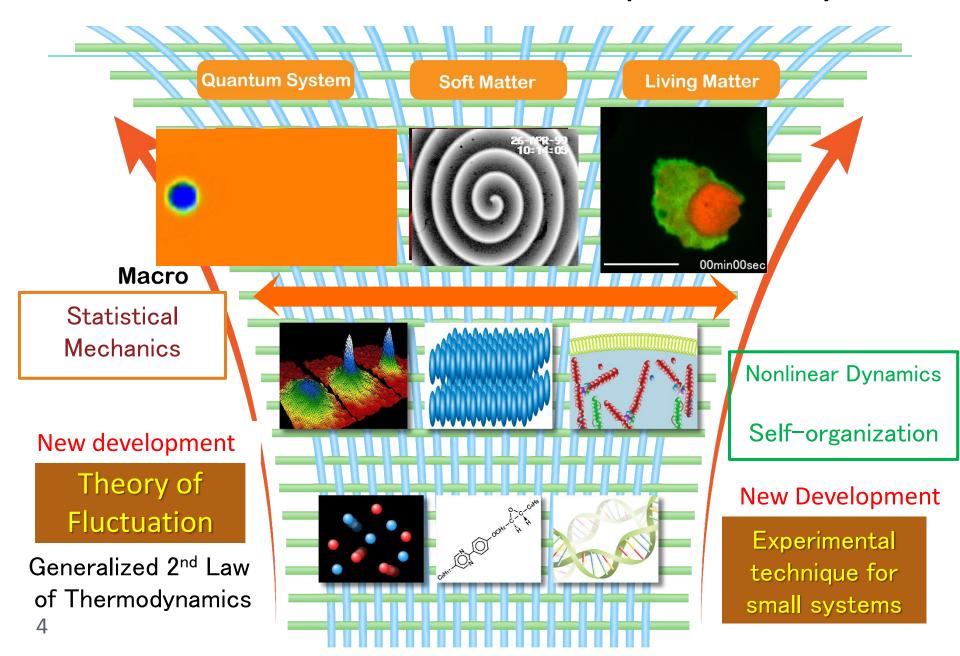
Synergy of Fluctuation and Structure

Quest for Universal Laws in Non-Equilibrium Systems

Grant-in-Aid for Scientific Research on Innovative Areas of MEXT, JAPAN (FY2013-2017)



Quest for Universal Laws in Non-Equilibrium Systems

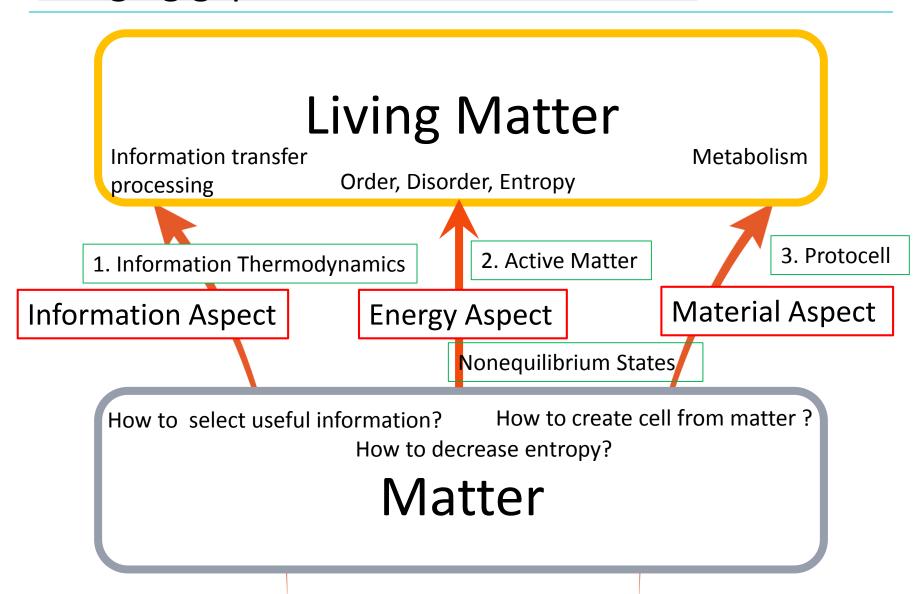


Objectives and Research Contents of Our Project

- How to extract useful information from fluctuations
- How do self-organized structures arise from fluctuations?
- Are there universal laws in nonequilibrium systems?
- How are nonequilibrium fluctuation and structure interacting in soft/solid condensed matter, active matter, and biomatter?

How can a collection of mere matter exert basic functions of life, such as self-production, self-propulsion, information processing?

Bridging gaps between matter and life



Collective Motion of Active Matter

Artificial Systems

Biological Systems

Self-Propelled Colloid

Molecular Motor + Track

Single Particle Motion

Single Cell Migration

Dense Suspension

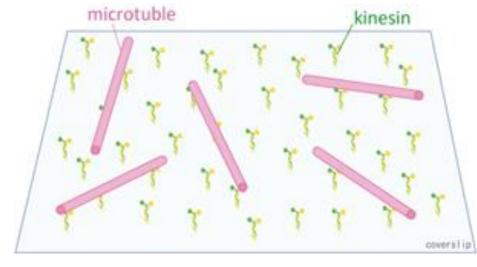
Multicellular Migration

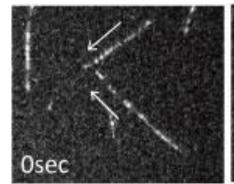
Directed Movement	Interaction	Noise (Fluctuation)
Polar	Polar	Thermal Fluctuation
Nematic	Nematic	Deterministic Chaos, etc.

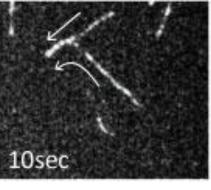
Collective Motion of Microtubules on Kinesin Bed

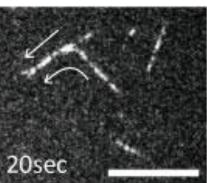
Motility assay of kinesin motors and microtubules

Poster by Sakurako Tanida "Pattern Frmation of Microtuble"









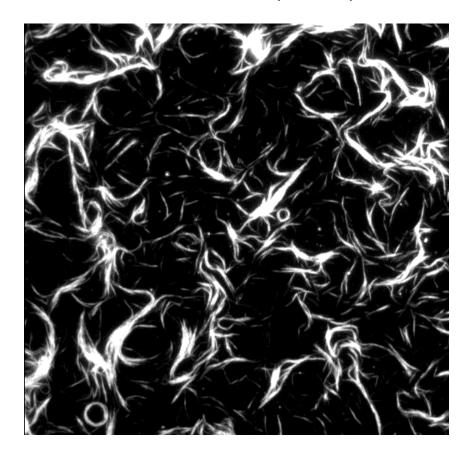
Collision
Dynamics

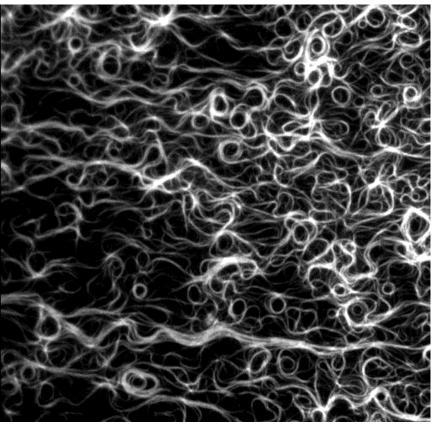
Alignment Effect

Collective Motion of Microtubules on Kinesin Bed

Short Microtubules (~ 1 um)

Long Microtubules (~ 5 -7um)

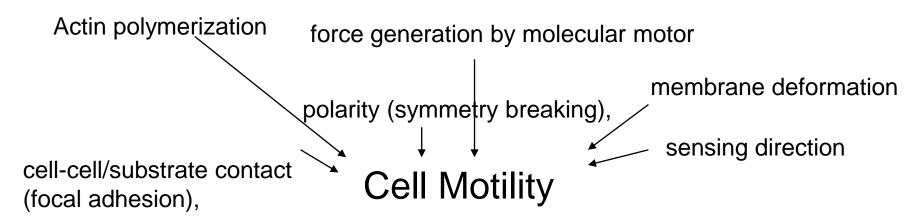


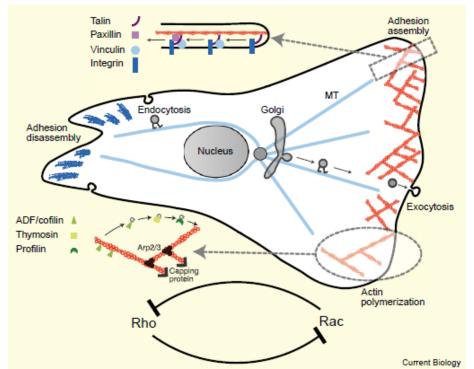


Bundle formation with nematic ordering

Loop formation, Oscillating Bundles

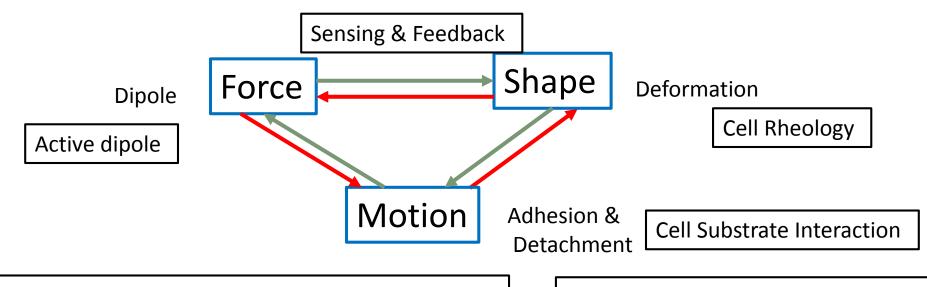
Cell Migration





How cells coordinate deformation and movement?

What is the relationship between Force, Shape, and Motion?



Cell migration might be understood as a collective non-equilibrium dynamics of matter.

Look at dynamics of slow variables: Shape, Force, Centroid Motion

Various Modes in Migration

1) Steady motion :ballistic

2) Turning(Oscillation, Rotation) :short term behavior

3) Random migration :long term behavior

Spontaneous Symmetry Breaking of Cell Shape

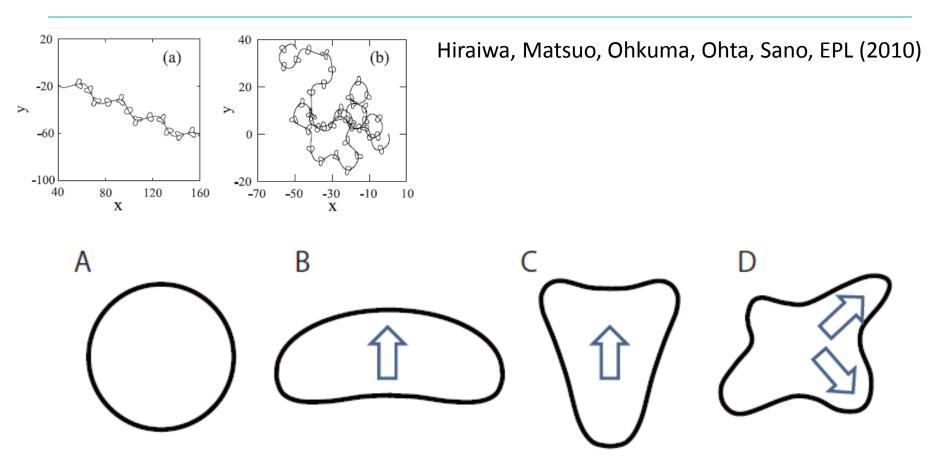
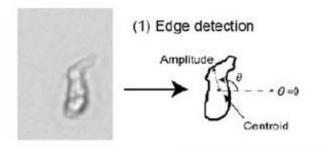


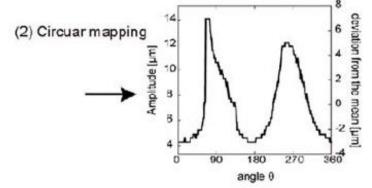
Fig. 1.12. Spontaneous symmetry breaking in cell shape. (A) Circular cell (Actin polymerization is prohibited by latrunculin A.) (B) Keratocyte cell. (C) Polarized cell in chemotaxis. (D) Amoeboid cell.

Sano, Ohta, Matsuo, (World Scientific, 2011)

Ordered Patterns of Cell Shape & Cell Migration

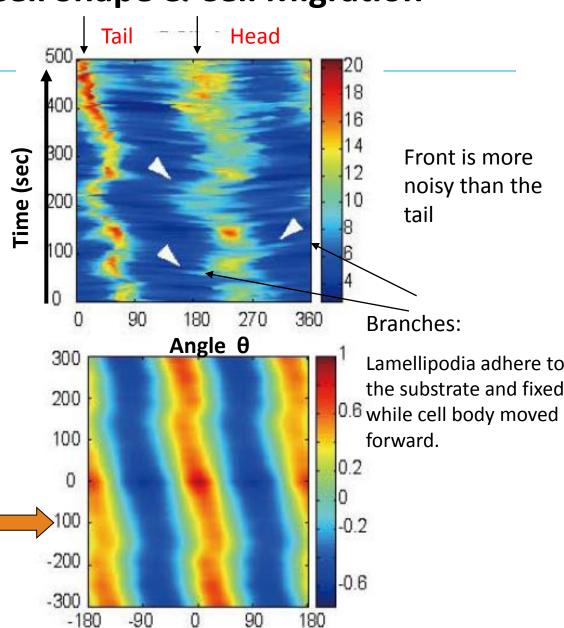
Maeda, Inose, Matsuo, Iwaya, MS, Plos One, 3, e3734 (2008)





Auto Correlation Function:

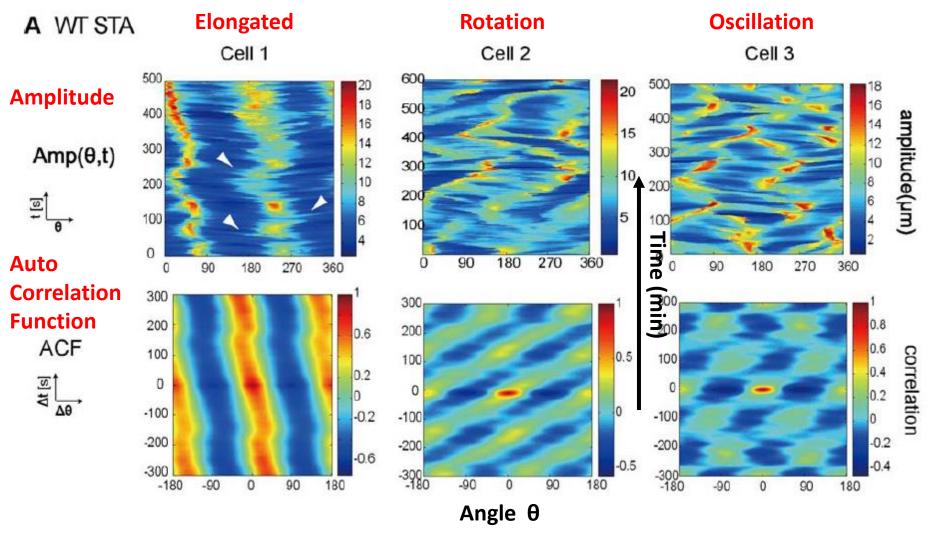
$$C = \frac{\left\langle A(\theta, t) A(0, 0) \right\rangle_{0, 0}}{\left\langle A(\theta, t)^{2} \right\rangle_{\theta, t}}$$



Ordered Patterns in Cell Shape Dynamics:

Starved Cells

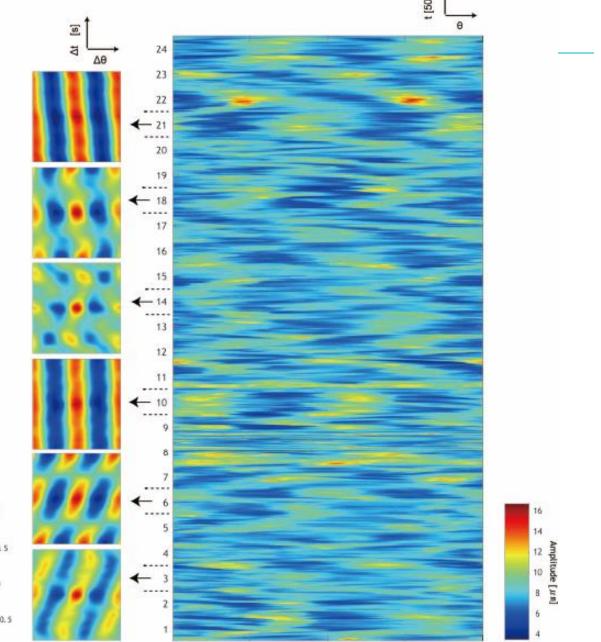
Maeda, Inose, Matsuo, Iwaya, MS,
Plos One, 3, e3734 (2008)

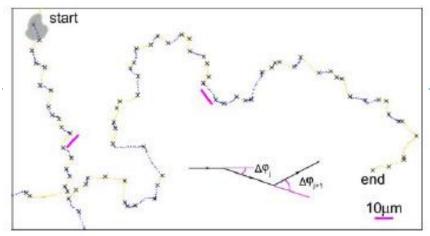


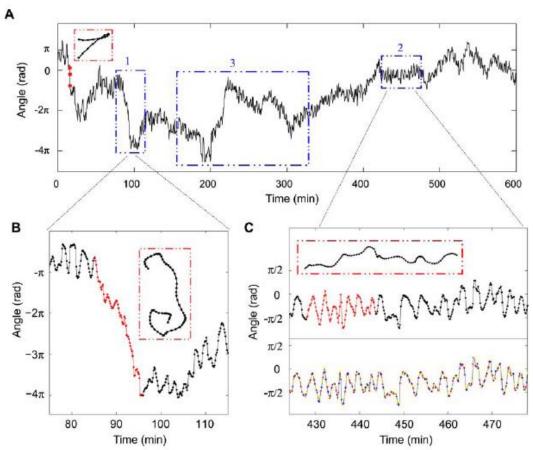
About 70% of time series are classified into 3 ordered patterns.

Transition of patterns occurs in a single cell along the time course.

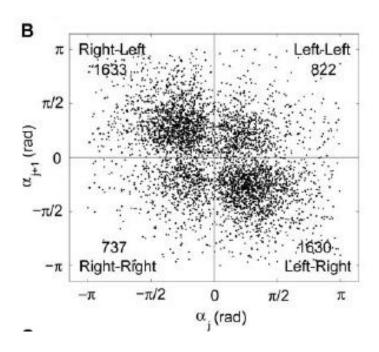
Time series and ACF of a single cell for time duration 30min.







Liang, Cox, PLoS one (2008)

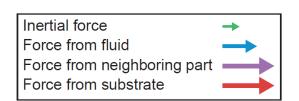


Cells show zig-zag motion.

Goal and ideas for measuring traction force

- Goal
 - Find out a force-motion relationship of migrating cells
- Challenge
 - Characterize the spatial properties of the traction stress
- Ideas
 - ▶ Force spot tracking: Fine-grained approach
 - ▶ Multi-pole analysis: Coarse-grained approach

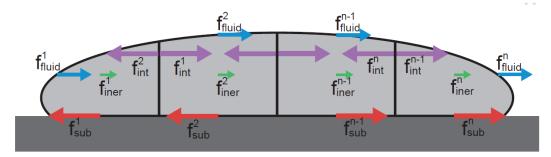
Net Traction Force Vanishes for Small Cells



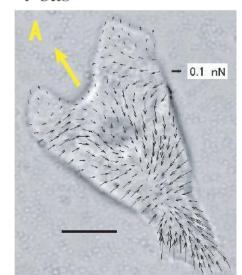
Newton's Third Law: $\sum_{i} f_{int}^{i} = 0$.

$$\sum_{i} f_{int}^{i} = 0.$$

$$f_{fluid} \sim \eta \Delta v / \Delta z S \ll \sum_{i} f_{sub}^{i}$$



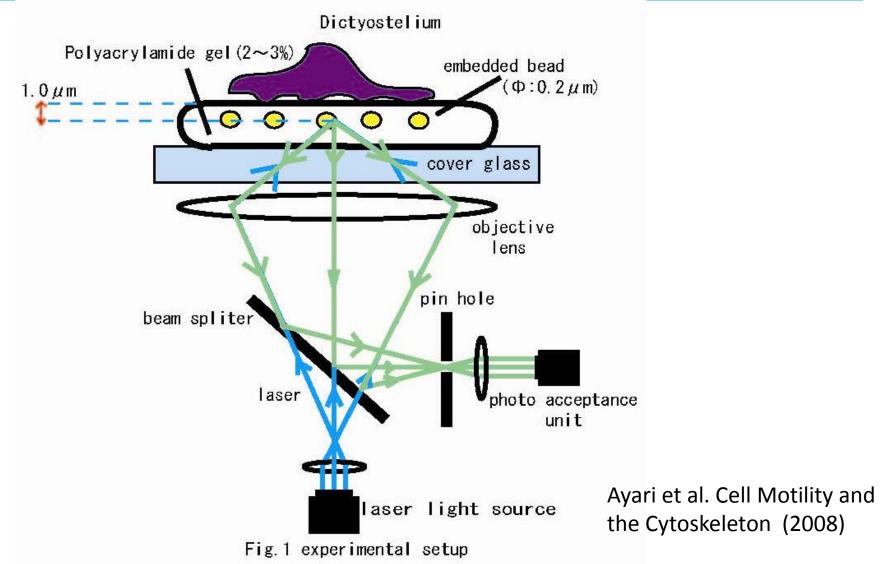
$$\sum_{i} f_{sub}^{i} = 0$$



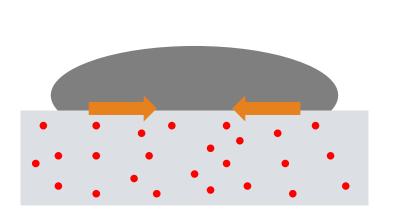
Sum of traction force (torque) is zero.

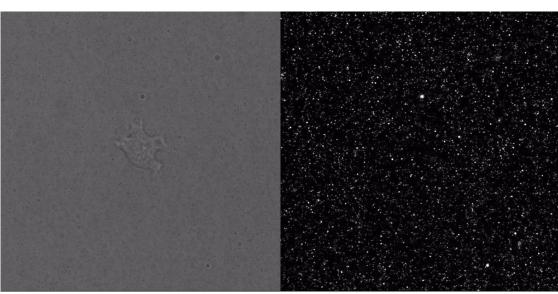
$$\sum f_i = 0, \quad \sum M_i = 0$$

Measurement of Traction Force in Single Cell



Traction Force Microscopy





Transmission

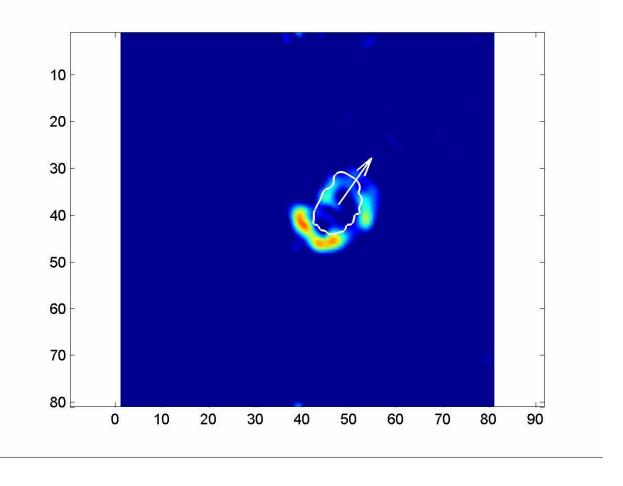
Fluorescence (beads)

We quantified the traction stress of migrating *Dictyostelium* cell (simple uni-cellular amoeba) using flexible poly-acrylamide gel embedded with fluorescence beads.

Substrate: poly-acrylamide gel (E=800Pa)

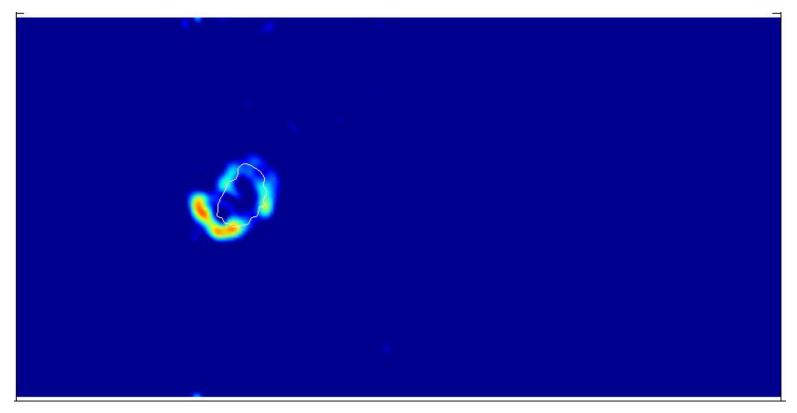
Bead: red (diameter 200nm, excitation 543nm)

Traction Force Microscopy 3



Improving measurement protocol, we measured the traction stress of migrating Dicty more than one hour with a better spatio-temporal resolution.

Highly localized traction stress 2



Traction stress amplitude

Lab-frame integration

The force spots are evident in the integrated plot.

- 'foot prints' of migrating cell.

Multi-pole expansion

$$M_i = \int T_i dS$$

$$M_{ij} = \int x_i T_j dS$$

Oth moment: net force

Anti-mirror symmetric

1st moment: force dipole

Mirror symmetric

Multi-pole expansion

$$M_i = \int T_i dS$$

Oth moment: net force

Anti-mirror symmetric

$$M_{ij} = \int x_i T_j dS$$

1st moment: force dipole

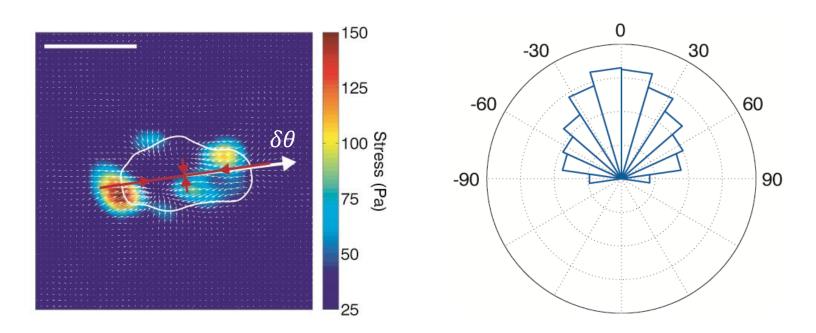
Mirror symmetric

Force Dipole → Deformation

Force dipole

The force dipole is a 2*2 symmetric matrix with two orthogonal eigenvectors.

Force dipole Relationship with motion



The dipole axis and cellular velocity orientation are agreed well.

- Cell migrates along with its force dipole axis.

Left: Snapshot (white arrow: velocity vector)

Right: PDF of angle formed by dipole and velocity axes (N=5; ~3000frames)

Multi-pole expansion

$$M_i = \int T_i dS$$

Oth moment: net force

Anti-mirror symmetric

$$M_{ij} = \int x_i T_j dS$$

1st moment: force dipole

Mirror symmetric

Multi-pole expansion

$$M_i = \int T_i dS$$

0th moment: net force

Anti-mirror symmetric

$$M_{ij} = \int x_i T_j dS$$

1st moment: force dipole

Mirror symmetric

$$M_{ijk} = \int x_i x_j T_k dS$$

2nd moment: force quadrupole

Anti-mirror symmetric

Force quadrupole

$$M_{ijk} = \int x_i x_j T_k dS$$

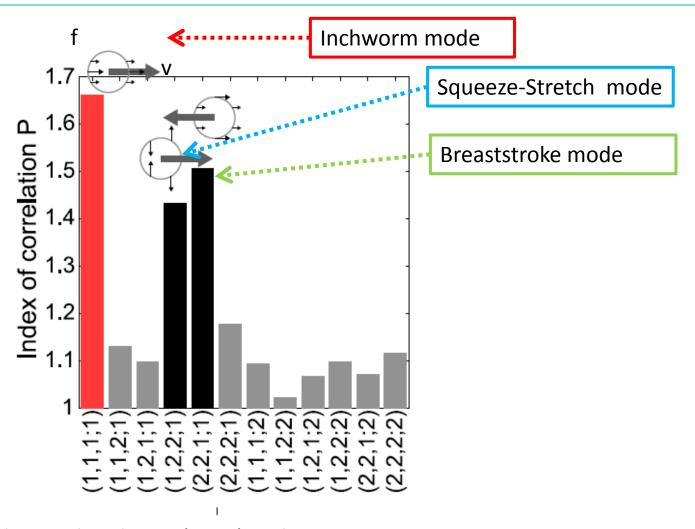
$$(1,1,1) \qquad (1,1,2) \qquad (1,2,1)$$

$$(1,2,2) \qquad (2,2,1) \qquad (2,2,2)$$

The force quadrupole is a 3rd order tensor with 6 independent components.

Force quadrupole Relationship with motion

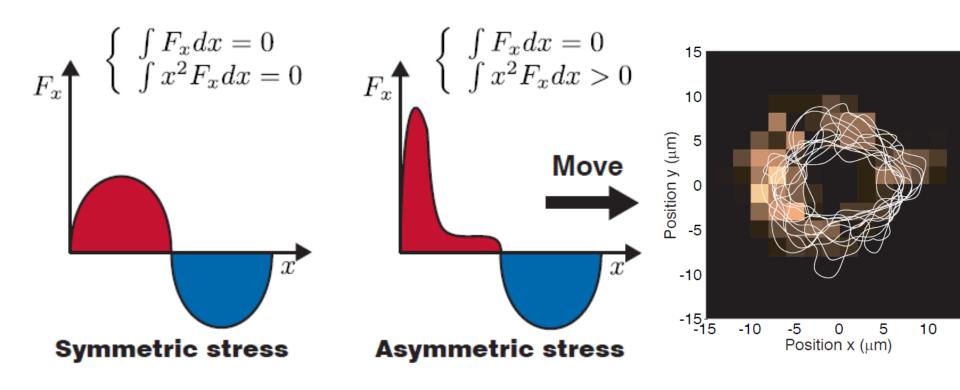
3 Different Modes in Crawling Cells



One strongly correlated pair: (1,1,1) and Vx

- The sign of (1,1,1) determines the direction along the dipole axis.

(1,1,1;1) correlation



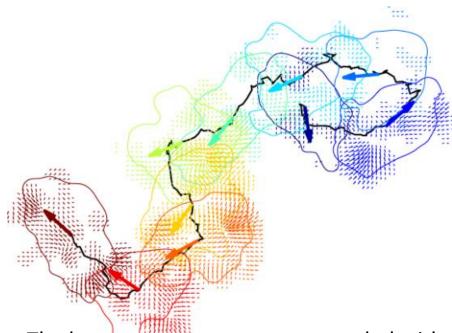
Symmetric stress pattern

Asymmetric stress pattern

Force quadrupole determines direction of migration

Predicting amoeboid motion of the cell

Multi-pole analysis reveals a simple force-motion relationship in cell migration



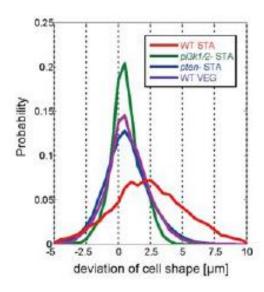
- The lowest two moments are coupled with a
- Consistent with the force spot tracking
- H. Tanimoto and MS, Biophys. J. 106, 16-25 (2014).
- H. Tanimoto and MS, Phys. Rev. Lett. 109, 248110 (2012).

Normal equations for multi-pole traction force and shape is required.

$$\dot{u}_i = f(u_i, M_{ij}, M_{ij;k})$$

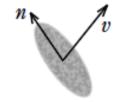
$$\dot{M}_{ij} = g(u_i, M_{ij}, M_{ij;k})$$

$$\dot{M}_{ij;k} = h(u_i, M_{ij}, M_{ij;k})$$



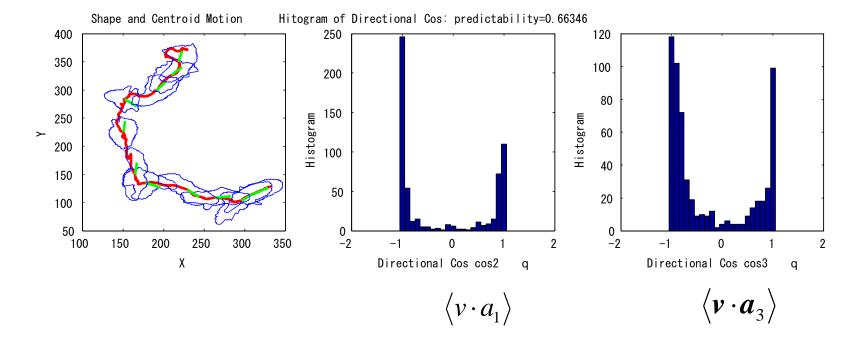
Correlation between Fourier modes and centroid velocity

M. Sano, unpublished



Fourier Expansion of Shape:

$$r(\theta,t) = \sum_{n} a_{n}(t)e^{in\theta}$$



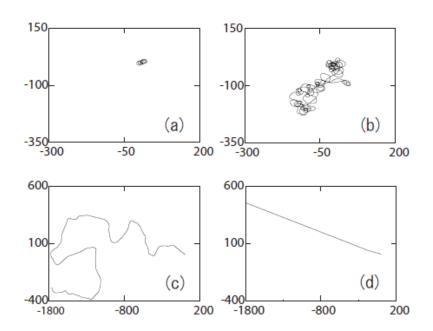
Deformable self-propelled particle

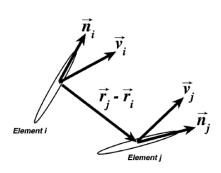
Ohta, Ohkuma PRL (2009)

$$\frac{d}{dt}v_{\alpha} = \gamma v_{\alpha} - |v^2|v_{\alpha} - aS_{\alpha\beta}v_{\beta}$$

$$\frac{d}{dt}S_{\alpha\beta} = -\kappa S_{\alpha\beta} + b\left(v_{\alpha}v_{\beta} - \frac{1}{2}|v^{2}|\delta_{\alpha\beta}\right)$$

$$S_{\alpha\beta} = s \left(n_{\alpha} n_{\beta} - \frac{1}{2} \delta_{\alpha\beta} \right)$$





Introducing 3rd order rank tensors

$$\begin{array}{lll} \frac{d}{dt}U_{ijk} & = & -\kappa_3U_{ijk} - d_3(U_{\ell mn}U_{\ell mn})U_{ijk} \\ & + & d_1\left[v_iv_jv_k - \frac{v_\ell v_\ell}{4}(\delta_{ij}v_k + \delta_{ik}v_j + \delta_{jk}v_i)\right] \\ & + & \frac{d_2}{3}\left[S_{ij}v_k + S_{ik}v_j + S_{jk}v_i \\ & - & \frac{v_\ell}{2}(\delta_{ij}S_{k\ell} + \delta_{jk}S_{i\ell} + \delta_{ki}S_{j\ell})\right] \\ & - & d_4v^2U_{ijk} - d_5(S_{mn}S_{mn})U_{ijk} \\ & + & \frac{2d_6}{3}\left[S_{ij}S_{k\ell}v_\ell + S_{jk}S_{i\ell}v_\ell + S_{ki}S_{j\ell}v_\ell \\ & - & \frac{1}{2}(\delta_{ij}S_{nk}S_{n\ell}v_\ell + \delta_{jk}S_{ni}S_{n\ell}v_\ell \\ & + & \delta_{ki}S_{nj}S_{n\ell}v_\ell)\right]. \end{array}$$

$$\boldsymbol{z}_1 = \boldsymbol{v}_1 - \boldsymbol{i}\boldsymbol{v}_2,$$

$$z_2 = \frac{1}{2}(S_{11} - iS_{12}),$$

$$z_3 = \frac{1}{2} (U_{111} + iU_{222})$$

Normal Form Equations

$$\dot{z}_1 = f(z_1, z_2, z_3)$$
$$\dot{z}_2 = g(z_1, z_2, z_3)$$

$$\dot{z}_3 = h(z_1, z_2, z_3)$$

Collective Behavior is much more rich!

Normal Form Equations

Invariant under a transformation;

$$(z_{1}, z_{2}, z_{3}) \rightarrow (e^{i\theta}z_{1}, e^{2i\theta}z_{2}, e^{3i\theta}z_{3}),$$

$$\dot{z}_{1} = (\gamma + d_{11}|z_{1}|^{2} + d_{12}|z_{2}|^{2} + d_{13}|z_{3}|^{2})z_{1}$$

$$+ e_{11}\bar{z}_{1}z_{2} + e_{12}\bar{z}_{1}^{2}z_{3} + e_{13}\bar{z}_{2}z_{3} + e_{14}\bar{z}_{3}z_{2}^{2},$$

$$\dot{z}_{2} = (-\kappa_{2} + d_{21}|z_{1}|^{2} + d_{22}|z_{2}|^{2} + d_{23}|z_{3}|^{2})z_{2}$$

$$+ e_{21}z_{1}^{2} + e_{22}\bar{z}_{1}z_{3} + e_{23}\bar{z}_{2}z_{3}z_{1},$$

$$\dot{z}_{3} = (-\kappa_{3} + d_{31}|z_{1}|^{2} + d_{32}|z_{2}|^{2} + d_{33}|z_{3}|^{2})z_{3}$$

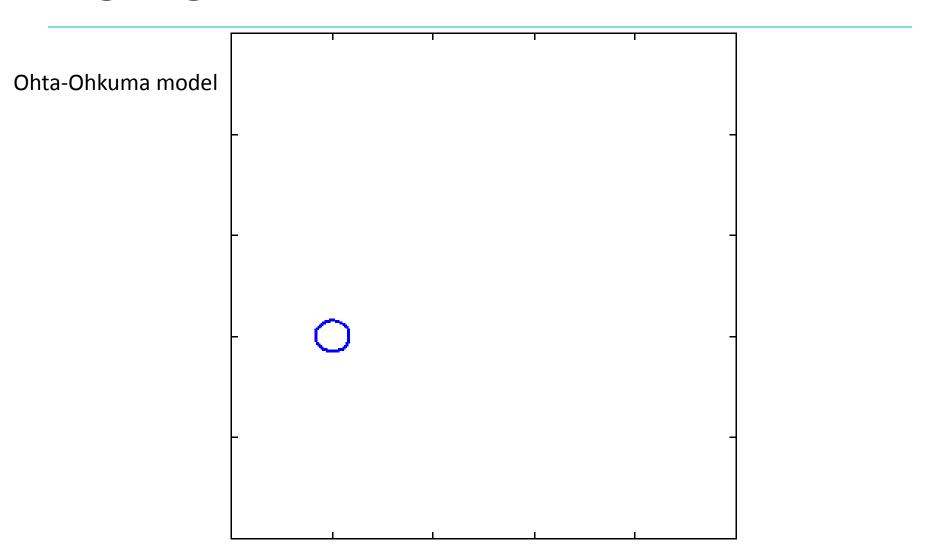
$$+ e_{31}z_{1}^{3} + e_{32}z_{1}z_{2} + e_{33}\bar{z}_{1}z_{2}^{2},$$

Hiraiwa, Matsuo, Ohkuma, Ohta, Sano, EPL (2010).

Straight motion

Ohta-Ohkuma model

Zig-zag motion



Chaotic motion

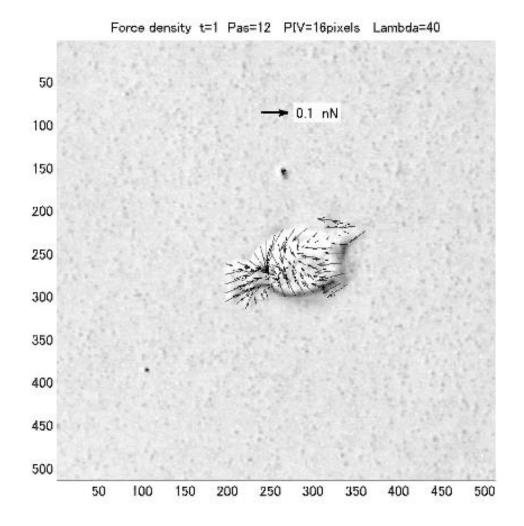
Ohta-Ohkuma model

Traction force of migrating cell

Dicyostelium cell

In two states:

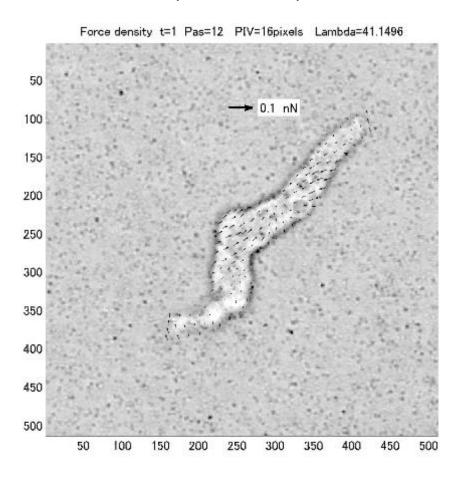
- 1. Starved state
- 2. Vegetative stated



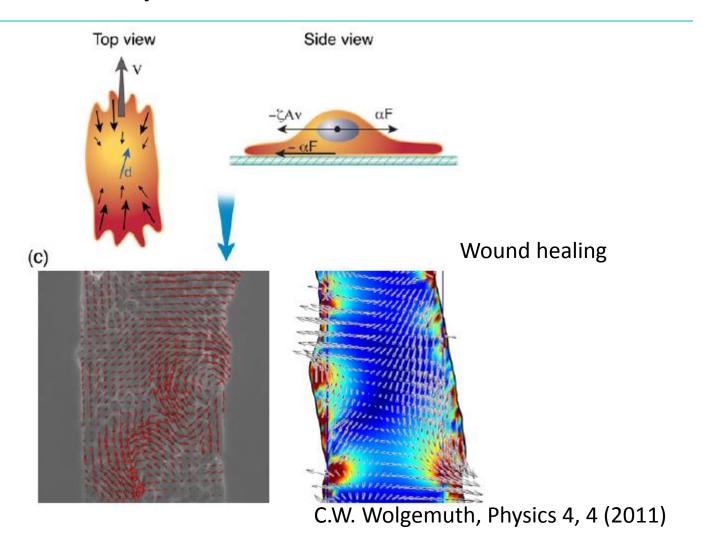
Force Distribution

Traction force of migrating cell

Polarized cell (Starved Cell)



Single Cell motility to Collective Motion

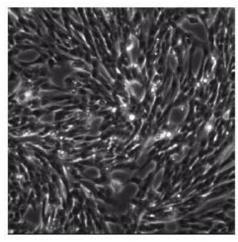


Short Summary

1. Multi-pole analysis reveals a simple force-motion relationship in cell migration



2. Collective motion of NS cells can be analyzed by nematicaly interacting moving (active nematic) material



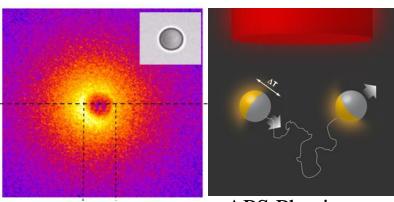
- The lowest two moments are coupled with cell migration
- Consistent with the force spot tracking

What are active colloids?

Self-propelled colloid:

Self-propelled Janus particles moving their own directions

By a local temperature gradientSelf-Thermophoresis

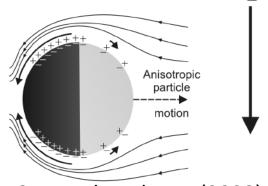


Jiang, Yoshinaga, Sano, PRL (2010)

APS Physics Viewpoint(2010)

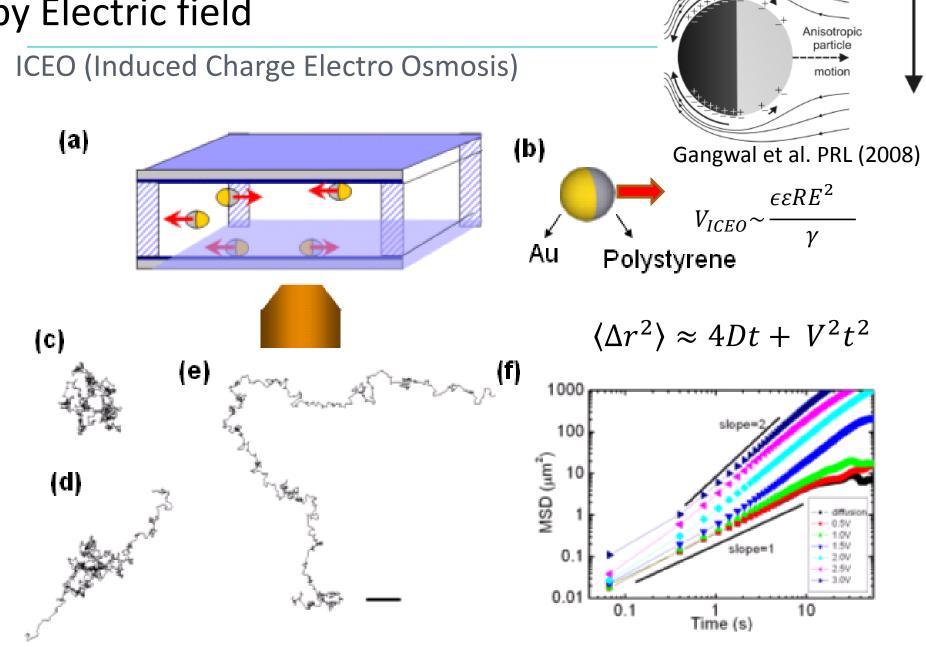
By electric field:

Induced Charge Electro-Osmosis (ICEO)

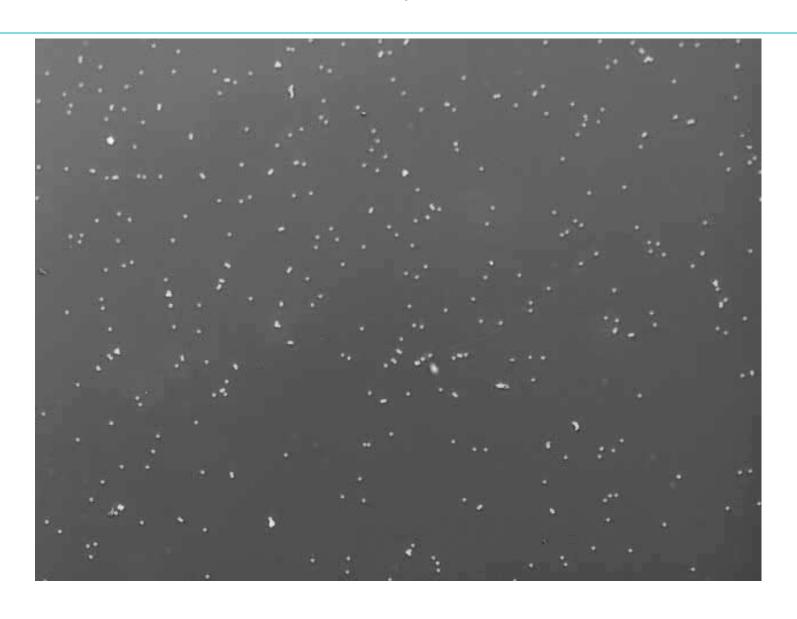


Gangwal et al. PRL (2008)

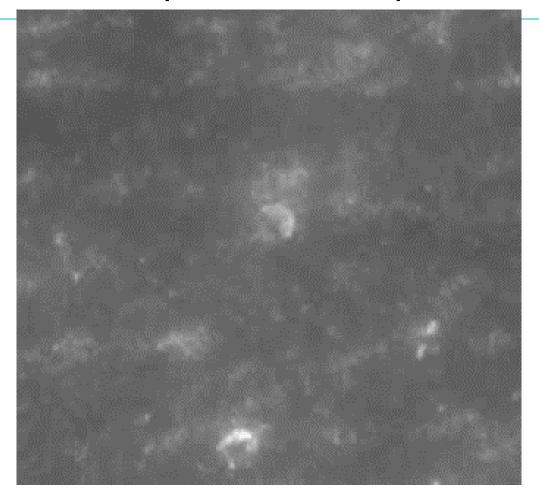
Self-propulsion of Janus particle II: by Electric field

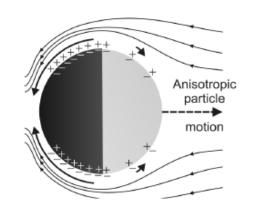


Motion of Janus Particle: Top View



Surface slip flow drives particle

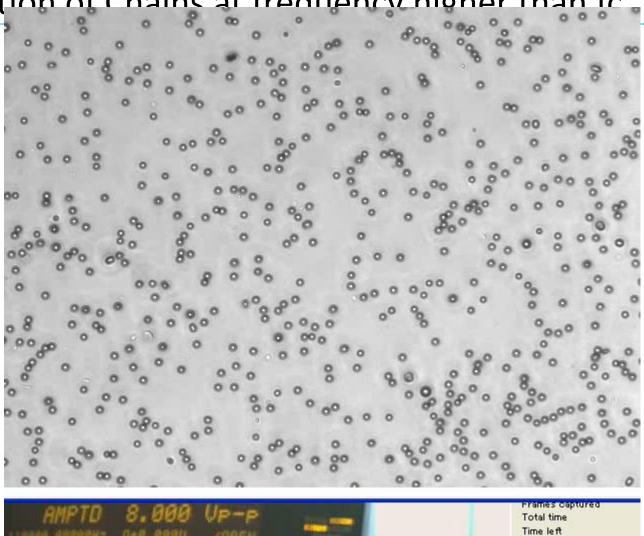




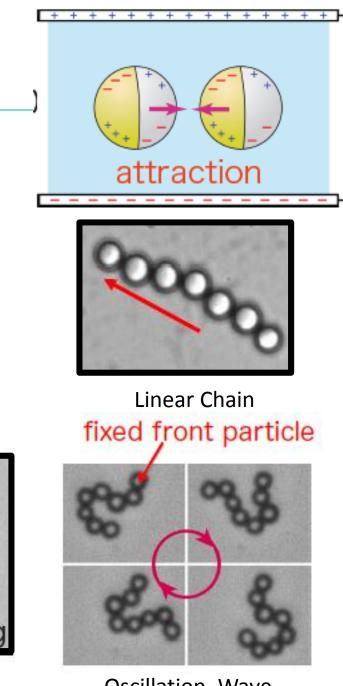
Visualization: Tracer particle 200nm fluorescent beads

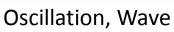
Janus Particle: 6 μm

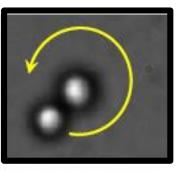
Formation of Chains at frequency higher than fo



Total file size

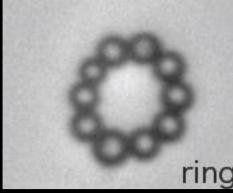






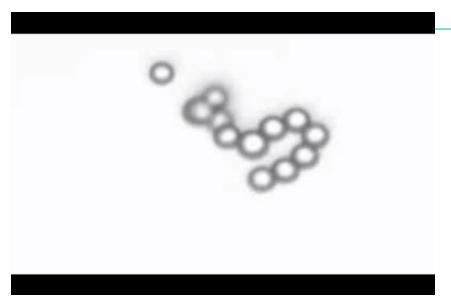
Doublet

fixed pentagon

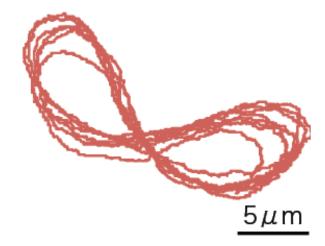


Triplet

Deformable self-propelled chain

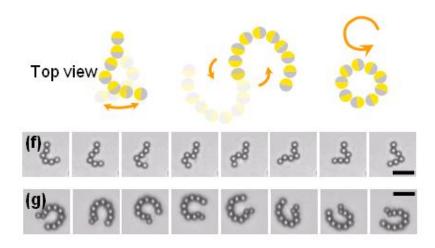


Waving motion

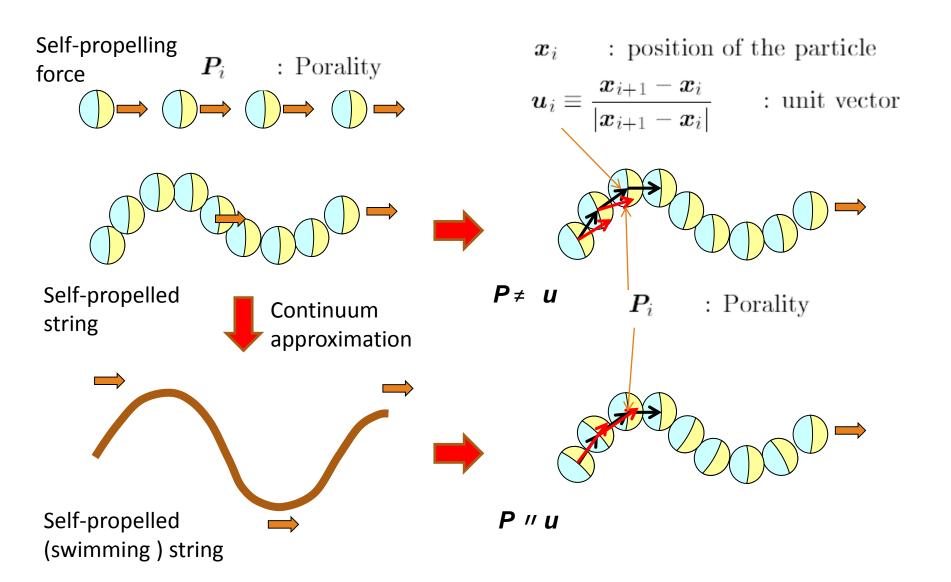


Trajectory of the tail particle

Spiraling motion



Problem of self-propelled flexible chain



Motion of active filaments

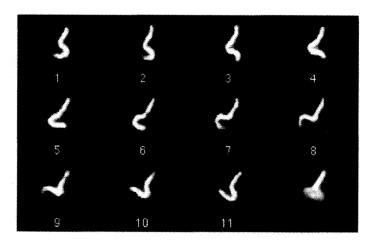
$$\zeta \frac{d\boldsymbol{r}_i}{dt} = \boldsymbol{F}_i$$

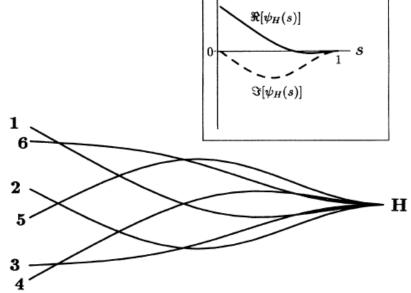
$$F_i = (T_i u_i - T_{i+1} u_{i+1}) + f_0 u_i + B(u_{i-1} - 3u_i + 3u_{i+1} - u_{i+1}) + \eta_i$$

$$\zeta_{\perp} \frac{\partial u_{\perp}}{\partial t} = -B \frac{\partial^4 u_{\perp}}{\partial s^4} - f_0 s \frac{\partial^2 u_{\perp}}{\partial s^2}, \ 0 < s < \ell,$$
 K. Sekimoto, PRL (1995)

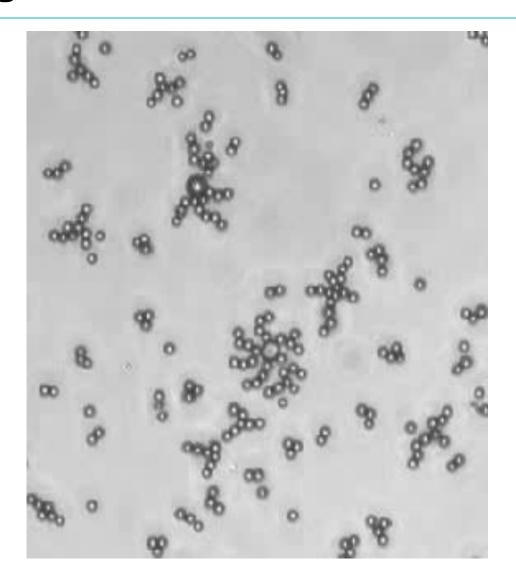
Motion of actin filaments on myosin bed.

Bourdieu, Leibler, Libchaber, PRL (1995)





Emergent dynamics of self-propelled string with cargo



Acknowledgements

- H. Tanimoto (Institut. Jacques Monod, France)
- ▶ K. Kawaguchi (U. Tokyo)
- ▶ T. Ohta (U. Tokyo)
- Sakurako Tanida (U. Tokyo)
- ▶ Taiki Nisgiguchi (U. Tokyo)

- Y. Maeda (Kyoto Univ.)
- Miki Matsuo (JAMSTEC)
- T. Hiraiwa (Univ. Berlin)