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Group Chase and Escape (Kamimura and Ohira, 2010)

(A)
* Old problem from 17th Century: Tractrix
* Applications to real world problem

* But, mostly, one—to—one cases analyzed

(B)
* More functioning for the “particles”:

Granular Physics —> Traffic Problems —> Group Chase and Escape

* Swarms of insects, animals, fish, etc.

Our Approach:
Consider the problem of chase and escape in groups from complex

physics perspectives by fusing approaches from (A) and (B).



Example of Chase and Escape
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Model

Field: Square Grid with a periodic boundary condition (100 x 100).

Chasers: Nc (trying to move to the closest target).
Targets: Nt (trying to move away from the closest chaser).
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Figure 1. Hopping rules for chasers and targets. While chasers hop to close in on
their nearest targets, targets hop to evade their nearest chasers. Dotted arrows from
chaser to target indicate that chaser hops to close in on target. Solid arrows show
possible hopping directions with indicated probabilities. (a) Generally, they have two
choices. (b) When chasers or targets are in same x or y-axis, chasers have one choice,
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while targets have three choices.

Time to Catch All Targets: T

_ t t—1 0
Typical Lifetime of Targets:  — 2.t (N T N, T )/ N, T

Cost: C — Nc'T/N%



Simulation Results 2
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Ne = 100 and N = 1000




Simulation Results 3




Pattern Classification and Quantification
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FIG. 2. Chasing uxnl escaping processes characterized by pa
rameters g and p. Pattern A, B, and C represent motion of

chasers around an escapee with corresponding values of g
ocontrast, pattern D, E, and F represent motion of

around a chaser with corresponding values of p.
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FIG. 5. Time evolution of § and N7 (¢)/NT with N7 = 10
and N¢ = 35.



Stochastic Resonance

%a?(t) = —%V(a,’.) + Acos(wt + ¢) + £(t)
Viz) = _glﬁ + %1?4
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Model Extension 2: Making Errors in Steps

Stochastically makes errors in making steps to and from opponents

Hopping to neighboring site is now probabilistic with a “temperature”:
Distance decrease Al = —1
Distance increase A&l =1

Chasers: ;¢ = exp(—Al;/T;) /S exp(—Al/Ty)

Targets: p; = exp(Al;/Ty)/>; exp(Al;/Ty)

Time for entire catch

Figure 12. Time for entire catch as function of temperature 7. Lines from the
above to bottom are for No = 5,10, 25, 50, 100, 500, 1000, 5000, 9990. For all lines, we
fix NY = 10.



Delay Differential Equations
Typical Delayed Dynamics

Z2X (1) + X(t) = JIX(t - 7))

o dt

* Mackey-Glass Model
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Delays in Chase and Escape

Distant Dependent Delay

The chaser points to the
evader’s past position
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Chases and Escapes and Optimization Problems:

(arXivel1412.2114)

Chases and Escapes over “Energy Landscapes” of optimization problems

Cost Function Landscape

Designate Two States: Lower Cost = Evader .

Higher Cost = Chaser O (

Evader seeks lower cost Chaser moves closer to Evader
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N
When two states are the same ‘
Randomize one of them to perform

neighboring search Y,

Fig. 2. Overall Design of the Chase and Escape mechanism
for optimization problems.

1200 '
1000
800
600

100 |

500 lOIO() 1 SII)O
Fig. 3. Traveling Salesman Problem with 52 cities. The line

is the shortest path. This best path length is approximately
7.544.
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Fig. 4. An example of path for the Traveling Salesman
Problem with 52 cities with our algorithm using chase and
escape. This path length is approximately 7.940.



Discussion + Extra

Further work

 Interaction among peers

e Off-Lattice Models

e Analytical Study

 Applications both in Physical
and Cyber Space



