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The ultimate robotic swarm:
a liquid that thinks
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Subsets of Liquids that think

Construction Dlstrlbuted Computlng Collective Motion

Appearance Change Intelligent function V|scoeIaS|t|cy
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Making a liquid that thinks

“Droplets” “Liquid that thinks”
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Liquid that thinks

Useful novel

materials?

“Droplets” Liquid that thinks
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Background: Materials that think

e Embedded...

— Actuation
— Sensing
— Computation

— Communication

* Periodic, amorphous

Programmable Matter (Goldstein, 2005)
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Enablers

 Cheap sensing,
computation, actuation

 Cheap manufacturing

e Available polymers
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Materials that Sense

e Prosthetic / augmented limbs

 Improved situational
awareness for robots

 More subtle Human / Robot
Interaction

e Structural monitoring
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Materials that change Appearance
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* Smart facades " S Sl
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e Camouflage

e Smart clothes
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Materials that change Shape

Reconfigurable airplane
wings

Reconfigurable
aerodynamic structures
Reconfigurable architecture
Reconfigurable furniture

| S

@correlllab




New forms of artistic expression

K. Sugawara, K. Hata, N. Correll, M. Theodore (2013): E#N{THDEIEETILEZDIGH~ &
neemn=y—JLESwarm Wall ~. 1st International Conference on Human Agent Interaction
(HAI), Sapporo, Japan, 2013.
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Materials that Sense
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Soft Sensing Skin

EcoFlex Rubber

Sensor Node Microphone

Rubber Mesh

Form Surface with Sandpaper

Sensor network woven in
rubber mesh

Embedded in EcoFlex silicone
rubber

Surface textured using 60-grit
sandpaper during curing

D. Hughes, N. Correll (2014): A Soft, Amorphous Skin that can Sense and Localize Texture . IEEE
International Conference on Robotics and Automation (ICRA), Hong Kong, 2014.
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Soft Sensing Skin
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1. Texture localization
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2. Texture Classification

Logistic regression

Classifier trained on 15
predefined textures

128 inputs 1

y =90+ 01f1 +05f5 + -+ 60,1)

15 outputs
1935 weights stored on 1
board Brillo: 2.4%

Skin:  93.5%
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Classifier Training

a) brillo

b) brush

c) cardboard

d) coarse wire mesh
e) cotton

f) dense foam

g) fine wire mesh
h) plastic

i) sandpaper

j)  silicone foam

k) skin

[) sponge

m) terry cloth

n) textured silicone
o) wood

e (Classifiers trained using 15 textures
e 100 samples per texture

e 10-fold cross-validation used to determine
accuracy
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Classification Results Summary
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 Possible improvements Confusion Matrix
— Multi-modal sensing
— Joint classifiers

— Better classifiers

Non-trivial, material-centric computation
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Materials that Change Appearance
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Appearance changing materials
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Interacting with a Distributed System

N. Farrow, N. Sivagnanadasan, N. Correll (2014): Gesture Based Distributed User Interaction System for a
Reconfigurable Self-Organizing Smart Wall. In: Proceedings of the 8th International Conference on Tangible,
Embedded and Embodied Interaction (TEI), pp. 245-246 , ACM 2014.
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Distributed Gesture Recognition
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ACCuracy

Accuracy vs. Packet loss

Distributed Memory Hybrid Distributed Computation
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Tight relationship between material and algorithm design trade-offs

University of Colorado
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Materials that Shape Change
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Variable Stiffness Control

Stiffness control = shape control
Melting of PCL
2-200MPa change in Youngs’ M.

Local feedback temperature
control

Global distributed shape control

Displacement - Nodal, Magnitude
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M. A. McEvoy, N. Correll (2014): "Thermoplastic variable stiffness composites with embedded, networked
sensing, actuation, and control. In: Journal of Composite Materials, 2014.
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Principle of Operation

Applied Applied
tension tension
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Resulting Shape Change
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M. A. McEvoy, N. Correll (2014): Shape Change Through Programmable Stiffness. International

Symposium on Experimental Robotics (ISER), Springer Verlag, Marrakech, Morocco, 2014,
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Pneumatic Shape Change

Modeling

e Geometry
< < e Material properties
* Pressure

e Curvature
e Resulting force

Outside Inside
hopw h—h:  pw—w; . h—hy  pw—w
E (yL E (yL t t
f / . (y_) dxdy—/ / I(J_) dz dy :/ / Pdxdy
0 Jo L\T h wt ! h w; _
Contraction force Expansion force

Modular soft robotic actuator with
embedded sensing and control
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Pressure

pressure [P5T)

Pneumatic Shape Change

Feedback control

pressure (FSI) vs time (sec)
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Tight interaction between distributed control and material physics
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Materials that Self-Assemble
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1. Self-assembly

2. Cell differentiation
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3. Collective behavior
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DNA Tile Assembly Model
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e Rules to encode

neighborhood b

Rules

relationships

e Maximal N rules for
structures with N tiles

* Many interesting
structures can be made
with fewer rules!

Yuriy Brun. Solving np-complete problems in the tile assembly model.
Theoretical Computer Science, 395(1):31-46, 2008.
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Example
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Robotic Materials

Discrete Discrete
Computation Computation
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Robotic Materials: New challenges
for Education

g

A soft skin that can Variable Stiffness by - - - -'
sense distance and force Sheet Jamming Shortest path routing
in a distributed system

/,
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Computation X Materials

Shape-changing materials that
can self-restore

Wireless data transmission
powered by Seebeck effect

An interactive Sushi tray

@ Cco rrel I Ia b @I ggmg”:rity of Colorado



Conclusion

 Robotic Materials pose new
opportunities and challenges in
distributed algorithms

 Understanding the link between
“crowd dynamics” and “material
physics”

e Timely problems:
— Novel capabilities for robots

— Novel materials with revolutionary
functionality for every-day applications
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