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1.2 - From “What is a Crowd?” to a Modeling Strategy

Five key questions waiting for an answer

>

1. Why a crowd 1s a “social, hence complex,” system?

2. How mathematical sciences can contribute to understand
the “behavioral dynamaics of crowds”?

3. How the crowd behaves in extreme situations such as
panic and how models can depict them as well as large
deviations (black swan)?

4. How multiscale problems can be treated?

5. Whach are the most challenging research perspectives?
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1.2 - From “What is a Crowd?” to a Modeling Strategy

!
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% 1.3 - From “What is a Crowd?” to a Modeling Strategy
I

Why a crowd is a social, hence complex, system?

Ability to express a strategy: Walkers are capable to develop specific strategies
related to their organization ability, which depend ontlogn state and on that of
the entities in their surrounding environment.

Heterogeneity and hierarchy: The ability to express a strategy is
heterogeneously distributed and includes, in additionfterént walking abilities,
also different objectives and the possible presence otlsad

Nonlinear interactions: Interactions are nonlinearly additive and involve
Immediate neighbors, but also distant ones.

Social communication and learning ability: Walkers have the ability to learn
from past experience. Therefore, their strategic abiltyhees in time due to
iInputs received from outside induced by the tendency totatiap.

Influence of environmental conditions: The dynamics is remarkably affected by
the quality of environment, including weather conditioasd the geometry of the
domain.
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1.4 - From “What is a Crowd?” to a Modeling Strategy

Complexity features of crowds - Definitions

e Definition of crowd: Agglomeration of many people in the same area at the
same time. The density of people is assumed to be high enouuse continuous
Interactions with or reactions to other individuals.

e Collective intelligence: Emergent functional behavior of a large number of
people that results from interactions of individuals ratihan from individual
reasoning or global optimization.

e Crowd turbulence: Unanticipated and unintended irregular motion of
individuals into different directions due to strong andidipchanging forces in
crowds of extreme density.

e Emergence of spontaneous behaviors: Establishment of a qualitatively
new behavior through non-linear interactions of many aijec subjects. In some
cases it can be definedBlack Swan.
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1.5 - From “What is a Crowd?” to a Modeling Strategy

Complexity features of crowds - Definitions

e Faster-is-slower effect: Certain processes (in evacuation situations,
production, traffic dynamics, or logistics) take more tirhparformed at high speed.
In other words, waiting can often help to coordinate thevaaets of several competing
units and to speed up the average progress.

e Freezing-by-heating effect: Noise-induced blockage effect caused by the
breakdown of direction-segregated walking patterns ¢gipr two or more lanes
characterized by a uniform direction of motion). Noise ngefaquent variations of
the walking direction due to nervousness or impatienceerctowd.

e Panic breakdown of ordered, cooperative behavior of
individuals: Anxious reactions to a certain event. Often, panic is chareed by
attempted escape of many individuals from a real or perddivesat in situations of a
perceived struggle for survival, which may end up in tramglor crushing.
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1.6 - From “What is a Crowd?” to a Modeling Strategy

From complexity features to “validation of modes”

Empirical data should be used toward the modeling of interas at the
micro-scale;

Empirical data in steady flow conditions should not be aréfig implemented
iInto the model, but should be depicted by the model;

Validation of models should be further developed by inggding their ability to
depict collective emerging behaviors;

The validity of the tuning models (namely the assessmenardmeters) should
have to a unique solution of the inverse problem of paramedentification;

The number of parameters should not higher than the phyfsiaalres which are
iIncluded into the model;

Others?
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% 1.7 - Scaling Problems and Mathematical Structures
I

Micro, Meso, Macro

e Microscale: Walkers are individually identified. In this case, their pios and
velocity identify, as dependent variables of time, theestdtthe whole system.
Mathematical models are generally stated by systems ofargdifferential
equations.

e Mesoscale: The microscopic state of the interacting entities is difintified by
the position and velocity, but their representation iswaebd by a suitable probability
distribution over the microscopic state. Mathematical elsdiescribe the evolution of
the above distribution function generally by nonlineaegro-differential equations.

e Macroscale: The state of the system is described by averaged gross tigsnti
namely density, linear momentum, and kinetic energy, gEaRas dependent variables
of time and space. Mathematical models describe the ewalofithe above variables
by systems of partial differential equations.
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1.8 - Scaling Problems and Mathematical Structures

Geometry

The set of all walls, including that of obstacles, is dendigd-.
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1.10 - Scaling Problems and Mathematical Structures

Maicroscale

e Themicroscopic description of the pedestrian dynamics is represented, for
eachi-th walker withi € {1,..., N}, by the following dimensionless variables: The
position vectorx,; = x;(t) = (xi(t), y:(t)) and the velocity vector

vi = vi(t) = (v (8), vy (1))

e Mathematical models are generally stated as a large sydterdinary differential
equations wherg; andv; are the dependent variables.

( dXi
:VZ)
dt
<
dv;
\ (;;:Fi(X1,...,XN,Vl,...,VN;Z),

and where the dynamics depends also on geoméingluding the inlet and outlet
gates.
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1.10. - Scaling Problems and Mathematical Structures

Mesoscale

e The overall systems can be subdivided into different grafersons, called
functional sub systemsvhich develop different strategies or express them in a
different way.

e The approach of the so-calléghavioral crowd dynamiastroduces an additional
microscopic variable. € [0, 1], which models the heterogeneous ability of people.
Then the overall state of the system is described byéreralized one-particle
distribution function

fi= filt,x,v,u) = fi(t,w) : [0,T] xQx Dy x D, — R,

such thatf; (¢, x, v, u) dx dv du = f;(t, w) dw denotes the number of active particles
whose state, at timg is in the intervalw, w + dw]| of thei-th subsystem, where

w = {x,v,u} is an element of thepace of the microscopic stai@gerex andv
represent thanechanical variables

What is a Crowd for a Mathematician?Hallmarks Toward Modeli ng and Simulations— p. 12/



1.11. - Scaling Problems and Mathematical Structures

e Macroscopic observable quantities are obtained by momeigghted by the
velocity variable. For instance, tilgmensionless local density, local flux,
mean velocity, and ]dc velocity variance respectively read:

p(t,x):/ flt,x,v,u)dvdu,
Dy,

q(t,x) :/ v f(t,x,v,u)dvdu,
Dy,

1
p(t,x)

o(t,x) = / v f(t,x,v,u)dvdu,
Dy,
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1.12 - Scaling Problems and Mathematical Structures

Mathematical structures

e Macroscale: Thelocal density p = p(t, x) which is referred to the maximum
densityn s of walkers; thamean velocity V = V (¢, x), which is referred td/y, of
walkers.

(

atp—l_vX(pV):Oa

OV + (V- V)V =ApV;5],

\

whereAlp, V; Y] is a psycho-mechanical acceleration acting on walkersan th
elementary macroscopic volume of the physical space, tluslaration depends also
on ..

e First-order models are obtained by mass conservation orkgd to a closure of the
equilibrium velocityV = V. (p; X).

e Second-order models are obtained by both equations aladhgavphenomenological
relation describing the psycho-mechanic acceleratigm V; V., X].
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2.1 - Mathematical Approach of the Kinetic Theory and
Evacuation Dynamics

How mathematical sciences can contribute to understand the
behavioral dynamics of crowds? (Toward a Modeling Strategy)

The overall system is subdivided infonctional subsystentonstituted by
entities, calledactive particleswhose individual state is callegttivity,

Each functional subsystem is featured by different wayxpfessing their own
strategy;

The state of each functional subsystem is defined by a timerakmt, probability
distribution over the micro-scale state, which includesifian, velocity, and
activity;

Interactions are modeled by games, more precisely staclymshes, where the
state of the interacting particles and their outputs arevknio probability;

The evolution of the probability distribution is obtainey d balance of number
particles within elementary volume of the space of the nscopic states, where
the dynamics of inflow and outflow of particles is related t@ractions.
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2.2 - Mathematical Approach of the Kinetic Theory and
Evacuation Dynamics

Interactions by stochastic gamesLiving entities, at each interactiop/ay a game
with an output that technically depends on their strategyedwmow related to
adaptation abilities. The output of the game generally tdeterministic.

e Testparticles of the-th functional subsystem with microscopic state, at tine
delivered by the variabléx, v, u) := w, whose distribution function is

fi = fi(t,x,v,u) = fi(t,w). The test particle is assumed to be representative of the
whole system.

e Field particles of thek-th functional subsystem with microscopic state, at ttime
defined by the variablex™, v*, v*) := w™, whose distribution function is

fe = fi(t,x*,v",u*) = fr(t,w").

e Candidate particles, of theh-th functional subsystem, with microscopic state, at
time ¢, defined by the variablex., v., u.) := w., whose distribution function is

frn = fn(t,x«, Ve, us) = fr(t,ws), where the dynamics depends also on the overall
shape of the walls including inlet and outlet doors.
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2.3 - Mathematical Approach of the Kinetic Theory and
Evacuation Dynamics

Mathematical Structures of the Kinetic Theory for Active Particles

H.1. Candidate or test particles ¥ interact with the field particles in the interaction
domainx® € €. Interactions are weighted by thateraction rate n,;[f] is
supposed to depend on the local distribution function irpibstion of the field
particles.

H.2. A candidate particle modifies its state according to the @bdlty density:

Chrlf] (Vs — Vv, ux — u|w., w), which denotes the probability density that a
candidate particles of the-subsystems with state. = {x., v., u.} reaches the state
{v,u} in thei-th subsystem after an interaction with the field particliethe
k-subsystems with state™ = {x", v*, u" }.

Normalizeddimensionlessvariables are used by dividing the numlneof people per
unit area with respect to the maximum numbeg¥f corresponding to packing, and the
velocity modulus (speed),. to the limit velocityv,

n Ur

p=—, V= .
nm Vg
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2.4 - Mathematical Approach of the Kinetic Theory and
Evacuation Dynamics

Balance within the space of microscopic states and Structes

Variation rate of the number of active particles
= Inlet flux rate caused by number conservative interactions

— Qutlet flux rate caused by conservative interactions
which corresponds to the following structure:

(at—i_v'ax) fz‘(t,X,V,U): (JZC_JZL—i_J’LP_JZD)[f](taxavau)

=Z/Q )W W) Chelf(ve = v e — i, W)
h k=17 2xDZxD2

X fr(t, X, Vi, us) [ (6, X", v, 0" ) dvy dv’ dus du” dx”

— Z fi(t,x,v) / Nik [f](We, w™) fr(t,x™, v u")dv" du™ dx”.
k=1 §2

X Do, X D+,

Michail Gromov, In a Search for a Structure, Part 1: On Entrdprgprint, (2013),
http://www.ihes.fr/ gromov/.
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2.5 - Mathematical Approach of the Kinetic Theory and
Evacuation Dynamics

Stochastic Games

1. Competitive (dissent): When one of the interacting particle increases its status by
taking advantage of the other, obliging the latter to desxreta Therefore the
competition brings advantage to only one of the two. Thigtgpinteraction has
the effect of increasing the difference between the stdtedaracting particles,
due to a kind of driving back effect.

2. Cooperative (consensus)When the interacting particles exchange their status,
one by increasing it and the other one by decreasing it. Thwerethe interacting
active particles show a trend to share their micro-stateh $gpe of interaction
leads to a decrease of the difference between the integgudirticles’ states, due
to a sort of dragging effect.

3. Learning: One of the two modifies, independently from the other, theoastate,
In the sense that it learns by reducing the distance betvirssn. t

4. Hiding-chasing: One of the two attempts to increase the overall distance tham
other, which attempts to reduce it.
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2.6 - Mathematical Approach of the Kinetic Theory and
Evacuation Dynamics

Stochastic Games Pictorial illustration of (a) competitive,(b) cooperative, ()
hiding-chasing and (d) learning game dynamics between two active particles. Black

and grey bullets denote, respectively, the pre- and post-interaction states of the
particles.

M»M

(a) Competition (b) Cooperation

Mm

(c) Hiding-chasing (d) Learning
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2.7 - Mathematical Approach of the Kinetic Theory and
Evacuation Dynamics

Active particles, micro-scale states, and environment

Active particles Walkers
Position

Microscopic state Velocity
Activity

Different abilities
Functional subsystems Individuals pursuing different strategies

Presence of leaders

Unbounded domains
Environment Domains with obstacles and boundaries

Quality of the environment
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2.8 - Models, Problems, and Evacuation Dynamics

Mesoscopic (kinetic) representation in polar coordinates

e The dynamics in two space dimensions is considered, whibr poordinates are
used for the velocity variable, namely= {v, 8}, wherewv is the velocity modulus and
0 denotes the velocity direction.

e The perceived density py along the directior:

«  arq Op p B _ ,
pe—pe[p]—er\/lJr(aep)Q (1 —p) H(9sp) + p H(—6p)]

wheredy denotes the derivative along the directigrwhile H (-) is the heaviside
function H(- > 0) = 1, andH (- < 0) = 0. Therefore, positive gradients increase the
perceived density up to the limit= 1, while negative gradients decrease it down to
the limit p = 0 in a way that

Jop — 00 = p* —1, Op=0=p"“=p, Oyp— —00 = p* — 0.
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2.9 - Mathematical Approach of the Kinetic Theory and
Evacuation Dynamics

Modeling the decision process of velocity adjustment

1. In unbounded domains three types of stimuli contributiaéomodification of
walking direction: (i) desire to reach a well defined targetmely a direction or a
meeting point; (ii) attraction toward the mean stream) &ttempt to avoid
overcrowded areas (in domains with boundaries also thepcesof walls induce
an additional stimulus to avoid them).

2. Walkers moving from one direction to the other adapt thelocity to the new
local perceived density conditions, namely they decrepsedfor increasing
perceived density and increase it for decreasing perceigadity.

3. The activity variable according to a social dynamics daseattraction and/or
repulsion of social behaviors.

4. The dynamics is more rapid in high quality areas; moreoygidity is
heterogeneously distributed and increases for high vait#e activity variable.
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2.10. Mathematical Approach of the Kinetic Theory and
Evacuation Dynamics

Dynamics at the microscopic scale

of mouvement
V i(p)

. preferred direction

____________________

Interactions modify the dynamics of walkers in three steps:

1. direction of movement is changed depending on local demsean velocity, and
trend to the exit;

2. modulus of velocity is decreased (increased) dependirigeperceived density;

3. activity variable is varied according to a social dynasybased on attraction
and/or repulsion of social behaviors.
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2.11. Models, Problems, and Evacuation Dynamics

Three types of stimuli contribute to modify the walking ditien:
1. desire to reach a well defined targejf);

2. attraction toward the mean stream®);

3. attempt to avoid overcrowded area$?.

The preferred direction is defined by

(1= pwl? +p[ev® + (1 e)p™)]

W = ) 86[071]7

[t = o ® + plev® + (1 — )]

where
(s) _ _V (s) _ __Vp
v = v o= e
V]|

Vol
and the parameteraccounts for panic conditions.
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2.11. Models, Problems, and Evacuation Dynamics

A further adjustment in the presence of boundaries follows:

The candidate walker changes in probability the directiomotion by following
the rules elaborated in unbounded domains;

If its distance from the wall{, is within a given cut-offd.,, walker velocity is
rotated so as the velocity component normal to the wall isedbeszd linearly with

_________________ T 2 _ d (1
vy = —wy
T dw
R\ . 2 271/2
X D~ gt o7 - o
|
Y,
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2.12. Models, Problems, and Evacuation Dynamics

Individuals walking in a corridor with opposite directions

Lyi exit LIPS ® -9 ¢ ¢ exit

The kinetic model of pedestrian crowds is applied to the l@mbof two groups of
people walking in opposite directions.

The segregation of walkers into lanes of uniform walkinggdiron is
guantitatively assess by computing the band index

1 Ly
Yalt) = 77
T~y JO
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2.13. Models, Problems, and Evacuation Dynamics

Pedestrians walking in a corridor with opposite directions

1 ' ' T ]

150 pedestrians

10 pedestrians A

0 *

I SO N R BRI R
0 100 200 300 400 500 600

t [s]
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& 2.14. Models, Problems, and Evacuation Dynamics

A: Low density flow; B: high density flow; ¢ = .8




2.15. Models, Problems, and Evacuation Dynamics

The role of the “selfishness” parameterPanic. Breakdown of ordered, cooperative

behavior of individuals due to anxious reactions to a certain event. [Helbing D.,
Johansson A., (2009)]

30
l
©,
) o
E 20— Pedestrians = 150 g~ -
S =
© A
>
3]
@®©
>
L
10
| | L | |
0 0,2 0,4 0,6 0,8 1
B
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Index

1. From the Question “What is a Crowd?” to a Modeling Strategy

2. The Mathematical Approach of the Kinetic Theory and Evaclation Dynamics

3. From Microscopic to Macroscopic

microscale mesoscale macroscale

* 3.1 Using models of micro-scale dynamics to close macras@mpiations: mass
conservation and linear momentum equation;

* 3.2 From micro-scale dynamics to kinetic type models anchfkanetic type
models to hydrodynamics.
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% 3.1 - From Microscopic to Macroscopic

How multiscale problems can be treated?

From microscopic dynamics to hydrodynamics: mass conservian

Let us consider the mass conservation equation involvimgideand velocity
depending on time and space coordinates, namelyp(t, x) andV = V (¢, x).
Moreover, consider two phenomenological parameters:

a € [0, 1] which models the quality of the environment where walkerseno
wherea = 1 stands for optimal quality of the environment, which allawseach
high velocity, whileaw = 0 stands for worst quality, which prevents the motion;

e € [0, 1] which models the attraction of walkers toward the direcbbthe mean
velocity frome = 0, which stands for highest search of less congested areas.

Two class of models can be studied:

Homogeneous crowd, where all walkers have the same walking ability;

Heterogeneous crowd, where walkers are subdivided in a numhbeof
populations, the labeled by the subsciiptorresponding to different functional
subsystems
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3.3 - From Microscopic to Macroscopic

From microscopic dynamics to hydrodynamics: Structure formass conservation
e Homogeneous crowd: The mass conservation equation writes as follows:

The closure of the equation can be obtained by modeling therdience oV on p by
a phenomenological relation of the type= V|p|(«, ¢), So that the conservation
equation formally writes as follows:

Otp+ Vx - (pVpl(a,€)) =0,

where square brackets denote that functional, rather thatibns, relations can be
used to link the local mean velocity to the local density.

Specific models can be obtained by heuristic interpretatios of physical reality
leading to V = V|[p] and inserting such models into the mathematical structure.
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3.4 - From Microscopic to Macroscopic

From microscopic dynamics to hydrodynamics: Structure formass conservation

Heterogeneous crowd: The state of the system is defined by a set of
dimensionless number densities

pi = pi(t,x), i1=1,...,n, p(t,x):Zpi(t,x),
i=1

where the subscripts correspond to a discrete variablegimgdhe walking ability or
different strategies, with values corresponding to thesthi#scripts =1, ..., n.

The new structure simply needs the modification for a mixture

O pi + Vx<pizvi[p]> =0 i=1,...,n,

=1
where the modeling of the mean velocity differs for each paion
Vi = Vi|p|(a,¢).
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3.5 - From Microscopic to Macroscopic

Homogeneous crowd:Derivation of models requires simply to describe analytyca
the dependence &f on the local density distribution.

Walkers first choose the preferred direction defined by the uit vector w by taking
Into account the various stimuli defined in Part Il. Subsequatly they adapt their
velocity modulus to the local perceived density™[p]: V = V(p; «), and according
to the following constraints: V(0) = «, V'(0) = V(1) = V'(1) = 0, where prime
denotes derivative with respect o

The expression ab has been already computed in Part I, while a modél afan be
obtained from a simple polynomial approximation. Finahlg imodel is as follows:

Otp + Vx (pa(l —3p*° +2px2w(p”, 5)) = 0.
Heterogeneous crowd:

Otpi + Vx (12% (1—3p*” +2px )wi(p*,e))) =0 i=1,...,n,
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3.6 - From Microscopic to Macroscopic

From Kinetic to Macroscopic
Calculations analogous to those we have seen in Part Id:yiel

10: 4+ wj(cosbsi+ sinbij) - Vx| fij(t,x) = Tij [f] (¢, x)

- > > / AT 03 )13 a1, °)

h,r=1 k,s=1
Fi (60 »> / (%) fus (b, XY A, £ = {fis}

Existence for arbitrarily large times has been proved irBapach space
X1 = C([0,T], L, ,,,) of the matrix-valued functions
f=f(t,x):[0,T] x Q — Map_ 2, endowed with the norm

| fllxp= sup || f I,
te[0, T

Ltgnan = {f = (Jis) € Manom ||f||1—ZZ/ | Fig(t,%) | dx < oo},

1 =1 5=1
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3.7 - From Microscopic to Macroscopic

From Kinetic to Macroscopic
Continuity equation is obtained by summing with respectdaad:

Oep(t,x) + Vx - (pa)(t,x) = 0.

The momentum equation is obtained by multiplying:Ry and summing with respect
to: andy:

O (pa)(t,x) + Vx ZZ vij @ vij fiz(t,%) szwjbj[f] (,%)

1=1 53=1 =1 y=1
where it is important to distinguish between the transpiodt the source term, and
whereVy - > 10, > 00 (vij; @ vij fij (L, %)) denotes the vector

n m

Vx Z 'U'L] ®U13fz] t X (7??8% ij’LJ t X))) )

1=1 7=1 k=1 ¢

=1 7=1

wherel = 1, 2 correspond to the dimension of the space variable.
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3.8 - From Microscopic to Macroscopic

From Kinetic to Macroscopic In particular, in addition to the usual kinetic flux, there
IS a second contribution to the flux coming from the collisierm due to the finite size
of the interaction thresholds. Technical calculationsdyie

d(pa)(t,x) + Vx - (P(t,x) + pa®q)(t,x) + E(t,x) = S(t, %),

whereP, F/ andS are given by

P(t,x) = (ZZ () _ (’“)tX))(vg)—q“)(t,X))ﬁj(t,X)) |

Bltx) = 33" vy (190K | F5E)Lx) - Tulf)(E%)),
S(tx) = 193D vl

Closure follows by maximum entropy calculations to appmuie the terms
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3.9 - Open Problems

Open Problems and Perspectives

Whach are the most challenging research perspectives?

Modeling a variety of not usual behaviors and computing thei propagation
In space.

Modeling evacuation dynamics in complex venues includingassages from
one area to an other.

Qualitative analysis of the initial-boundary value problems for the dynamics
In domains with boundaries

Derivation of macroscopic models from the underlying desdption at the
micro-scale for dynamics in domains with boundaries

Others ?
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