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1.2 - From “What is a Crowd?” to a Modeling Strategy

Five key questions waiting for an answer

1. Why a crowd is a “social, hence complex,” system?

2. How mathematical sciences can contribute to understand

the “behavioral dynamics of crowds”?

3. How the crowd behaves in extreme situations such as

panic and how models can depict them as well as large

deviations (black swan)?

4. How multiscale problems can be treated?

5. Which are the most challenging research perspectives?
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1.2 - From “What is a Crowd?” to a Modeling Strategy
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1.3 - From “What is a Crowd?” to a Modeling Strategy

Why a crowd is a social, hence complex, system?

• Ability to express a strategy:Walkers are capable to develop specific strategies

related to their organization ability, which depend on their own state and on that of

the entities in their surrounding environment.

• Heterogeneity and hierarchy: The ability to express a strategy is

heterogeneously distributed and includes, in addition to different walking abilities,

also different objectives and the possible presence of leaders.

• Nonlinear interactions: Interactions are nonlinearly additive and involve

immediate neighbors, but also distant ones.

• Social communication and learning ability: Walkers have the ability to learn

from past experience. Therefore, their strategic ability evolves in time due to

inputs received from outside induced by the tendency to adaptation.

• Influence of environmental conditions:The dynamics is remarkably affected by

the quality of environment, including weather conditions,and the geometry of the

domain.
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1.4 - From “What is a Crowd?” to a Modeling Strategy

Complexity features of crowds - Definitions

• Definition of crowd: Agglomeration of many people in the same area at the

same time. The density of people is assumed to be high enough to cause continuous

interactions with or reactions to other individuals.

• Collective intelligence: Emergent functional behavior of a large number of

people that results from interactions of individuals rather than from individual

reasoning or global optimization.

• Crowd turbulence: Unanticipated and unintended irregular motion of

individuals into different directions due to strong and rapidly changing forces in

crowds of extreme density.

• Emergence of spontaneous behaviors: Establishment of a qualitatively

new behavior through non-linear interactions of many objects or subjects. In some

cases it can be defined aBlack Swan.
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1.5 - From “What is a Crowd?” to a Modeling Strategy

Complexity features of crowds - Definitions

• Faster-is-slower effect: Certain processes (in evacuation situations,

production, traffic dynamics, or logistics) take more time if performed at high speed.

In other words, waiting can often help to coordinate the activities of several competing

units and to speed up the average progress.

• Freezing-by-heating effect: Noise-induced blockage effect caused by the

breakdown of direction-segregated walking patterns (typically two or more lanes

characterized by a uniform direction of motion). Noise means frequent variations of

the walking direction due to nervousness or impatience in the crowd.

• Panic breakdown of ordered, cooperative behavior of

individuals: Anxious reactions to a certain event. Often, panic is characterized by

attempted escape of many individuals from a real or perceived threat in situations of a

perceived struggle for survival, which may end up in trampling or crushing.
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1.6 - From “What is a Crowd?” to a Modeling Strategy

From complexity features to “validation of modes”

• Empirical data should be used toward the modeling of interactions at the

micro-scale;

• Empirical data in steady flow conditions should not be artificially implemented

into the model, but should be depicted by the model;

• Validation of models should be further developed by investigating their ability to

depict collective emerging behaviors;

• The validity of the tuning models (namely the assessment of parameters) should

have to a unique solution of the inverse problem of parameters identification;

• The number of parameters should not higher than the physicalfeatures which are

included into the model;

• Others?
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1.7 - Scaling Problems and Mathematical Structures

Micro, Meso, Macro

• Microscale: Walkers are individually identified. In this case, their position and

velocity identify, as dependent variables of time, the state of the whole system.

Mathematical models are generally stated by systems of ordinary differential

equations.

• Mesoscale: The microscopic state of the interacting entities is still identified by

the position and velocity, but their representation is delivered by a suitable probability

distribution over the microscopic state. Mathematical models describe the evolution of

the above distribution function generally by nonlinear integro-differential equations.

• Macroscale: The state of the system is described by averaged gross quantities,

namely density, linear momentum, and kinetic energy, regarded as dependent variables

of time and space. Mathematical models describe the evolution of the above variables

by systems of partial differential equations.
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1.8 - Scaling Problems and Mathematical Structures

Geometry

P

T

∂Ω
Ω

P
′

~ν(P)

~ν(P′)

The set of all walls, including that of obstacles, is denotedby Σ.
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1.10 - Scaling Problems and Mathematical Structures

Microscale

• Themicroscopic description of the pedestrian dynamics is represented, for

eachi-th walker withi ∈ {1, . . . , N}, by the following dimensionless variables: The

position vectorxi = xi(t) = (xi(t), yi(t)) and the velocity vector

vi = vi(t) = (vi
x(t), vi

y(t)).

• Mathematical models are generally stated as a large system of ordinary differential

equations wherexi andvi are the dependent variables.


















dxi

dt
= vi ,

dvi

dt
= Fi(x1, . . . ,xN ,v1, . . . ,vN ; Σ),

and where the dynamics depends also on geometryΣ including the inlet and outlet

gates.
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1.10. - Scaling Problems and Mathematical Structures

Mesoscale

• The overall systems can be subdivided into different groupsof persons, called

functional sub systems, which develop different strategies or express them in a

different way.

• The approach of the so-calledbehavioral crowd dynamicsintroduces an additional

microscopic variableu ∈ [0, 1], which models the heterogeneous ability of people.

Then the overall state of the system is described by thegeneralized one-particle

distribution function

fi = fi(t,x,v, u) = fi(t,w) : [0, T ] × Ω × Dv × Du → IR +,

such thatfi(t,x,v, u) dx dv du = fi(t,w) dw denotes the number of active particles

whose state, at timet, is in the interval[w,w + dw] of thei-th subsystem, where

w = {x,v, u} is an element of thespace of the microscopic states, wherex andv

represent themechanical variables.
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1.11. - Scaling Problems and Mathematical Structures

• Macroscopic observable quantities are obtained by momentsweighted by the

velocity variable. For instance, thedimensionless local density, local flux,

mean velocity, and ]dc velocity variance respectively read:

ρ(t,x) =

∫

Dv

f(t,x,v, u) dv du ,

q(t,x) =

∫

Dv

v f(t,x,v, u) dv du ,

V(t,x) =
q(t,x)

ρ(t,x)
.

σ(t,x) =
1

ρ(t,x)

∫

Dv

v f(t,x,v, u) dv du ,
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1.12 - Scaling Problems and Mathematical Structures

Mathematical structures

• Macroscale: The local density ρ = ρ(t,x) which is referred to the maximum

densitynM of walkers; themean velocity V = V(t,x), which is referred toVM of

walkers.














∂tρ + ∇x · (ρV) = 0 ,

∂t V + (V · ∇x)V = A[ρ,V; Σ] ,

whereA[ρ,V; Σ] is a psycho-mechanical acceleration acting on walkers in the

elementary macroscopic volume of the physical space, this acceleration depends also

onΣ.

• First-order models are obtained by mass conservation only linked to a closure of the

equilibrium velocityV ∼= Ve(ρ; Σ).

• Second-order models are obtained by both equations along with a phenomenological

relation describing the psycho-mechanic accelerationA[ρ,V;Ve,Σ].
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2.1 - Mathematical Approach of the Kinetic Theory and
Evacuation Dynamics

How mathematical sciences can contribute to understand the

behavioral dynamics of crowds? (Toward a Modeling Strategy)

• The overall system is subdivided intofunctional subsystemsconstituted by

entities, calledactive particles, whose individual state is calledactivity;

• Each functional subsystem is featured by different ways of expressing their own

strategy;

• The state of each functional subsystem is defined by a time dependent, probability

distribution over the micro-scale state, which includes position, velocity, and

activity;

• Interactions are modeled by games, more precisely stochastic games, where the

state of the interacting particles and their outputs are known in probability;

• The evolution of the probability distribution is obtained by a balance of number

particles within elementary volume of the space of the microscopic states, where

the dynamics of inflow and outflow of particles is related to interactions.
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2.2 - Mathematical Approach of the Kinetic Theory and
Evacuation Dynamics

Interactions by stochastic games:Living entities, at each interaction,play a game

with an output that technically depends on their strategy somehow related to

adaptation abilities. The output of the game generally is not deterministic.

• Testparticles of thei-th functional subsystem with microscopic state, at timet,

delivered by the variable(x,v, u) := w, whose distribution function is

fi = fi(t,x,v, u) = fi(t,w). The test particle is assumed to be representative of the

whole system.

• Field particles of thek-th functional subsystem with microscopic state, at timet,

defined by the variable(x∗,v∗, u∗) := w∗, whose distribution function is

fk = fk(t,x∗,v∗, u∗) = fk(t,w∗).

• Candidateparticles, of theh-th functional subsystem, with microscopic state, at

time t, defined by the variable(x∗,v∗, u∗) := w∗, whose distribution function is

fh = fh(t,x∗,v∗, u∗) = fh(t,w∗), where the dynamics depends also on the overall

shape of the walls including inlet and outlet doors.
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2.3 - Mathematical Approach of the Kinetic Theory and
Evacuation Dynamics

Mathematical Structures of the Kinetic Theory for Active Particles

H.1. Candidate or test particles inx, interact with the field particles in the interaction

domainx∗ ∈ Ω. Interactions are weighted by theinteraction rate ηhk[f ] is

supposed to depend on the local distribution function in theposition of the field

particles.

H.2. A candidate particle modifies its state according to the probability density:

Ci
hk[f ](v∗ → v, u∗ → u|w∗,w), which denotes the probability density that a

candidate particles of theh-subsystems with statew∗ = {x∗,v∗, u∗} reaches the state

{v, u} in thei-th subsystem after an interaction with the field particles of the

k-subsystems with statew∗ = {x∗,v∗, u∗}.

Normalizeddimensionlessvariables are used by dividing the numbern of people per

unit area with respect to the maximum numbernM corresponding to packing, and the

velocity modulus (speed)vr to the limit velocityv`

ρ =
n

nM
, v =

vr

v`
.
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2.4 - Mathematical Approach of the Kinetic Theory and
Evacuation Dynamics

Balance within the space of microscopic states and Structures

Variation rate of the number of active particles

= Inlet flux rate caused by number conservative interactions

−Outlet flux rate caused by conservative interactions,

which corresponds to the following structure:

(∂t + v · ∂x) fi(t,x,v, u) =
(

J
C
i − J

L
i + J

P
i − J

D
i

)

[f ](t,x,v, u)

=

n
∑

h,k=1

∫

Ω×D2
u×D2

v

ηhk[f ](w∗,w
∗) Ci

hk[f ](v∗ → v, u∗ → u|w∗,w
∗
, u∗)

×fh(t,x,v∗, u∗)fk(t,x∗
,v

∗
, u

∗) dv∗ dv
∗
du∗ du

∗
dx

∗

−

n
∑

k=1

fi(t,x,v)

∫

Ω×Du×Dv

ηik[f ](w∗,w
∗) fk(t,x∗

,v
∗
, u

∗) dv
∗
du

∗
dx

∗
.

Michail Gromov , In a Search for a Structure, Part 1: On Entropy,Preprint, (2013),

http://www.ihes.fr/ gromov/.
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2.5 - Mathematical Approach of the Kinetic Theory and
Evacuation Dynamics

Stochastic Games

1. Competitive (dissent):When one of the interacting particle increases its status by

taking advantage of the other, obliging the latter to decrease it. Therefore the

competition brings advantage to only one of the two. This type of interaction has

the effect of increasing the difference between the states of interacting particles,

due to a kind of driving back effect.

2. Cooperative (consensus):When the interacting particles exchange their status,

one by increasing it and the other one by decreasing it. Therefore, the interacting

active particles show a trend to share their micro-state. Such type of interaction

leads to a decrease of the difference between the interacting particles’ states, due

to a sort of dragging effect.

3. Learning: One of the two modifies, independently from the other, the micro-state,

in the sense that it learns by reducing the distance between them.

4. Hiding-chasing: One of the two attempts to increase the overall distance fromthe

other, which attempts to reduce it.
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2.6 - Mathematical Approach of the Kinetic Theory and
Evacuation Dynamics

Stochastic Games- Pictorial illustration of (a) competitive,(b) cooperative, (c)

hiding-chasing and (d) learning game dynamics between two active particles. Black

and grey bullets denote, respectively, the pre- and post-interaction states of the

particles.
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2.7 - Mathematical Approach of the Kinetic Theory and
Evacuation Dynamics

Active particles, micro-scale states, and environment

Active particles Walkers

Position

Microscopic state Velocity

Activity

Different abilities

Functional subsystems Individuals pursuing different strategies

Presence of leaders

Unbounded domains

Environment Domains with obstacles and boundaries

Quality of the environment
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2.8 - Models, Problems, and Evacuation Dynamics

Mesoscopic (kinetic) representation in polar coordinates

• The dynamics in two space dimensions is considered, while polar coordinates are

used for the velocity variable, namelyv = {v, θ}, wherev is the velocity modulus and

θ denotes the velocity direction.

• Theperceived density ρa
θ along the directionθ:

ρ
a
θ = ρ

a
θ [ρ] = ρ +

∂θρ
√

1 + (∂θρ)2

[

(1 − ρ) H(∂θρ) + ρ H(−∂θρ)
]

,

where∂θ denotes the derivative along the directionθ, while H(·) is the heaviside

functionH(· ≥ 0) = 1, andH(· < 0) = 0. Therefore, positive gradients increase the

perceived density up to the limitρ = 1, while negative gradients decrease it down to

the limit ρ = 0 in a way that

∂θρ → ∞ ⇒ ρ
a → 1 , ∂θρ = 0 ⇒ ρ

a = ρ , ∂θρ → −∞ ⇒ ρ
a → 0.
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2.9 - Mathematical Approach of the Kinetic Theory and
Evacuation Dynamics

Modeling the decision process of velocity adjustment

1. In unbounded domains three types of stimuli contribute tothe modification of

walking direction: (i) desire to reach a well defined target,namely a direction or a

meeting point; (ii) attraction toward the mean stream; (iii) attempt to avoid

overcrowded areas (in domains with boundaries also the presence of walls induce

an additional stimulus to avoid them).

2. Walkers moving from one direction to the other adapt theirvelocity to the new

local perceived density conditions, namely they decrease speed for increasing

perceived density and increase it for decreasing perceiveddensity.

3. The activity variable according to a social dynamics based on attraction and/or

repulsion of social behaviors.

4. The dynamics is more rapid in high quality areas; moreoverrapidity is

heterogeneously distributed and increases for high valuesof the activity variable.
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2.10. Mathematical Approach of the Kinetic Theory and
Evacuation Dynamics

Dynamics at the microscopic scale

v* v* v*

a aρ < ρ 
*

a aρ < ρ 
*(2)(1) (2)

preferred direction
of mouvement

ν(p)
i

Interactions modify the dynamics of walkers in three steps:

1. direction of movement is changed depending on local density, mean velocity, and

trend to the exit;

2. modulus of velocity is decreased (increased) depending on the perceived density;

3. activity variable is varied according to a social dynamics based on attraction

and/or repulsion of social behaviors.

What is a Crowd for a Mathematician?Hallmarks Toward Modeli ng and Simulations– p. 25/40



2.11. Models, Problems, and Evacuation Dynamics

• Three types of stimuli contribute to modify the walking direction:

1. desire to reach a well defined target,ν
(t)
i ;

2. attraction toward the mean stream,ν
(s);

3. attempt to avoid overcrowded areas,ν
(v).

• The preferred direction is defined by

ω =
(1 − ρ)ν

(t)
i + ρ

[

εν(s) + (1 − ε)ν(v)
]

∥

∥

∥
ε(1 − ρ)ν

(t)
i + ρ [εν(s) + (1 − ε)ν(v)]

∥

∥

∥

, ε ∈ [0, 1],

where

ν
(s) =

V

‖V‖
, ν

(s) = −
∇ρ

‖∇ρ‖
,

and the parameterε accounts for panic conditions.
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2.11. Models, Problems, and Evacuation Dynamics

A further adjustment in the presence of boundaries follows:

• The candidate walker changes in probability the direction of motion by following

the rules elaborated in unbounded domains;

• If its distance from the wall,d, is within a given cut-off,dw, walker velocity is

rotated so as the velocity component normal to the wall is decreased linearly with

d.

v (2)

v (1)

d
dw

v
(2)
n =

d

dw
v
(1)
n

v
(2)
t = sign(v(1)

t )
[

v
(1)2 − v

(2)
n

2
]1/2
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2.12. Models, Problems, and Evacuation Dynamics

Individuals walking in a corridor with opposite directions

� � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � �
Ly

Lx

exitexit

wall

wall

• The kinetic model of pedestrian crowds is applied to the problem of two groups of

people walking in opposite directions.

• The segregation of walkers into lanes of uniform walking direction is

quantitatively assess by computing the band index

YB(t) =
1

LxLy

∫ Ly

0

∣

∣

∣

∣

∫ Lx

0

ρ1(t,x) − ρ2(t,x)

ρ1(t,x) + ρ2(t,x)
dx

∣

∣

∣

∣

dy
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2.13. Models, Problems, and Evacuation Dynamics

Pedestrians walking in a corridor with opposite directions
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� � 
 �

�
�
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�
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�

�
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� �

�
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2.14. Models, Problems, and Evacuation Dynamics

A: Low density flow; B: high density flow; ε = .8
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2.15. Models, Problems, and Evacuation Dynamics

The role of the “selfishness” parameterPanic: Breakdown of ordered, cooperative

behavior of individuals due to anxious reactions to a certain event. [Helbing D.,

Johansson A., (2009)]
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Index

1. From the Question “What is a Crowd?” to a Modeling Strategy

2. The Mathematical Approach of the Kinetic Theory and Evacuation Dynamics
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microscale mesoscale macroscale

• 3.1 Using models of micro-scale dynamics to close macroscopic equations: mass

conservation and linear momentum equation;

• 3.2 From micro-scale dynamics to kinetic type models and from kinetic type

models to hydrodynamics.
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3.1 - From Microscopic to Macroscopic

How multiscale problems can be treated?

From microscopic dynamics to hydrodynamics: mass conservation

Let us consider the mass conservation equation involving density and velocity

depending on time and space coordinates, namelyρ = ρ(t,x) andV = V(t,x).

Moreover, consider two phenomenological parameters:

• α ∈ [0, 1] which models the quality of the environment where walkers move,

whereα = 1 stands for optimal quality of the environment, which allowsto reach

high velocity, whileα = 0 stands for worst quality, which prevents the motion;

• ε ∈ [0, 1[ which models the attraction of walkers toward the directionof the mean

velocity fromε = 0, which stands for highest search of less congested areas.

Two class of models can be studied:

• Homogeneous crowd, where all walkers have the same walking ability;

• Heterogeneous crowd, where walkers are subdivided in a numbern of

populations, the labeled by the subscripti, corresponding to different functional

subsystems
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3.3 - From Microscopic to Macroscopic

From microscopic dynamics to hydrodynamics: Structure formass conservation

• Homogeneous crowd: The mass conservation equation writes as follows:

∂tρ + ∇x · (ρV) = 0.

The closure of the equation can be obtained by modeling the dependence ofV onρ by

a phenomenological relation of the typeV = V[ρ](α, ε), so that the conservation

equation formally writes as follows:

∂tρ + ∇x · (ρV[ρ](α, ε)) = 0 ,

where square brackets denote that functional, rather than functions, relations can be

used to link the local mean velocity to the local density.

Specific models can be obtained by heuristic interpretations of physical reality
leading toV = V[ρ] and inserting such models into the mathematical structure.

What is a Crowd for a Mathematician?Hallmarks Toward Modeli ng and Simulations– p. 34/40



3.4 - From Microscopic to Macroscopic

From microscopic dynamics to hydrodynamics: Structure formass conservation

Heterogeneous crowd: The state of the system is defined by a set of

dimensionless number densities

ρi = ρi(t,x) , i = 1, . . . , n , ρ(t,x) =

n
∑

i=1

ρi(t,x) ,

where the subscripts correspond to a discrete variable, modeling the walking ability or

different strategies, with values corresponding to the thesubscriptsi = 1, . . . , n.

The new structure simply needs the modification for a mixture:

∂tρi + ∇x

(

ρi

n
∑

i=1

Vi[ρ]

)

= 0 i = 1, . . . , n ,

where the modeling of the mean velocity differs for each population

Vi = Vi[ρ](α, ε).
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3.5 - From Microscopic to Macroscopic

Homogeneous crowd:Derivation of models requires simply to describe analytically

the dependence ofV on the local density distribution.

Walkers first choose the preferred direction defined by the unit vector ω by taking
into account the various stimuli defined in Part II. Subsequently they adapt their

velocity modulus to the local perceived densityρ∗[ρ]: V = V (ρ; α), and according
to the following constraints: V (0) = α, V ′(0) = V (1) = V ′(1) = 0, where prime

denotes derivative with respect toρ.

The expression ofω has been already computed in Part II, while a model ofV can be

obtained from a simple polynomial approximation. Finally the model is as follows:

∂tρ + ∇x

(

ρα(1 − 3 ρ ∗2 +2 ρ∗3)ω(ρ∗
, ε)

)

= 0.

Heterogeneous crowd:

∂tρi + ∇x

(

ρi

n
∑

i=1

i

n
α(1 − 3 ρ ∗2 +2 ρ∗3)ωi(ρ

∗
, ε)

))

= 0 i = 1, . . . , n ,
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3.6 - From Microscopic to Macroscopic

From Kinetic to Macroscopic

Calculations analogous to those we have seen in Part II, yield:

[

∂t + vj(cosθii + sinθij) · ∇x

]

fij(t,x) = Jij [f ](t,x)

=

n
∑

h,r=1

m
∑

k,s=1

∫

Ω[x]

η(ρa(t,x∗))Ars
hk(ij)(ρa(t, x

∗); α)fhk(t,x) frs(t,x
∗) dx

∗

− fij(t,x)

n
∑

k=1

m
∑

s=1

∫

Ω[x]

η(ρa(t,x∗)) fks(t,x
∗) dx

∗
, f = {fij}.

Existence for arbitrarily large times has been proved in theBanach space

XT = C([0, T ], L1
M2n,2m

) of the matrix-valued functions

f = f(t,x) : [0, T ] × Ω → M2n,2m endowed with the norm

‖ f ‖XT
= sup

t∈[0, T ]

‖ f ‖1,

L
1
M2n,2m

= {f = (fij) ∈ M2n,2m :‖ f ‖1=

n
∑

i=1

m
∑

j=1

∫

Ω

| fij(t,x) | dx < ∞}.
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3.7 - From Microscopic to Macroscopic

From Kinetic to Macroscopic

Continuity equation is obtained by summing with respect toi andj:

∂tρ(t,x) + ∇x · (ρq)(t,x) = 0.

The momentum equation is obtained by multiplying byvij and summing with respect

to i andj:

∂t(ρq)(t,x) + ∇x ·
n

∑

i=1

m
∑

j=1

(vij ⊗ vijfij(t,x)) =
n

∑

i=1

m
∑

j=1

vijJij [f ](t,x),

where it is important to distinguish between the transport and the source term, and

where∇x ·
∑n

i=1

∑m
j=1 (vij ⊗ vijfij(t,x)) denotes the vector

∇x ·
n

∑

i=1

m
∑

j=1

(vij ⊗ vijfij(t,x)) =

( n
∑

i=1

m
∑

j=1

2
∑

k=1

∂xk
(v`

ijv
k
ijfij(t,x))

)

`

,

where` = 1, 2 correspond to the dimension of the space variable.
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3.8 - From Microscopic to Macroscopic

From Kinetic to Macroscopic In particular, in addition to the usual kinetic flux, there

is a second contribution to the flux coming from the collisionterm due to the finite size

of the interaction thresholds. Technical calculations yield:

∂t(ρq)(t,x) + ∇x · (P (t,x) + ρq ⊗ q)(t,x) + E(t,x) = S(t,x),

whereP , E andS are given by

P (t,x) =

( n
∑

i=1

m
∑

j=1

(v
(k)
ij − q

(k)(t,x))(v
(`)
ij − q

(`)(t,x))fij(t,x)

)

1≤k,`≤2

,

E(t,x) =

n
∑

i=1

m
∑

j=1

vij

(

| Ω[x] | J ?
ij [f ](t,x) − Jij [f ](t,x)

)

,

S(t,x) = | Ω[x] |

n
∑

i=1

m
∑

j=1

vijJ
?
ij [f ](t,x).

Closure follows by maximum entropy calculations to approximate the terms
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3.9 - Open Problems

Open Problems and Perspectives

Which are the most challenging research perspectives?

• Modeling a variety of not usual behaviors and computing their propagation

in space.

• Modeling evacuation dynamics in complex venues including passages from

one area to an other.

• Qualitative analysis of the initial-boundary value problems for the dynamics

in domains with boundaries

• Derivation of macroscopic models from the underlying description at the
micro-scale for dynamics in domains with boundaries

• Others ?
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