Sovereign Credit Risk Analysis through Statistical Modeling

Yoko Tanokura Meiji University

November 28, 2013 International Conference on Mathematical Modeling and Applications 2013 Meiji University

This is the joint work with

Hiroshi Tsuda(Doshisha Univ.), Seisho Sato(Univ. of Tokyo) and Genshiro Kitagawa(ROIS)

Measuring sovereign credit risk

Sovereign Credit Default Swap (SovCDS)

... is an insurance contract that protects the buyer against the issuer's credit risk of the country's debt.

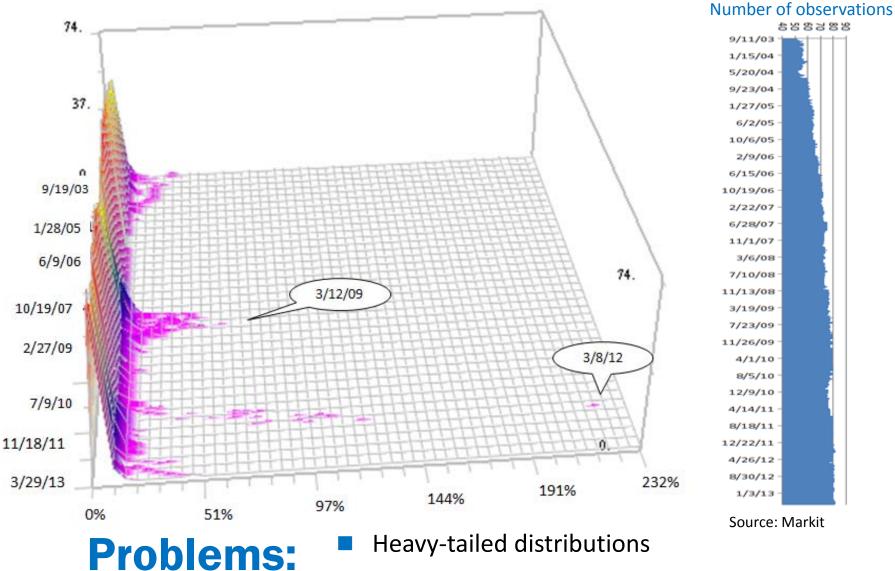
...can be regarded as the market evaluation on the credit risk for the country's economy.

Strictly speaking, although CDS spreads may include other factors such as risk premiums caused by its fluctuations, it is not easy to extract only credit risk.

Risk premium is practically assumed to be none or constant.

We suppose that CDS spreads measure the sovereign credit risk of the concerned country's debt.

Time series of SovCDS spread distributions



Time-varying number of observations

Method of distribution dependent index construction*

Apply the Box-Cox transformation (Box and Cox 1964) to the spreads

 $\begin{array}{c} q_{i,\lambda}(n) = h(p_i(n)) = \lambda^{-1}(p_i(n)^{\lambda} - 1) & \lambda \neq 0 \\ = \log p_i(n) & \lambda = 0 \end{array} \quad \begin{array}{c} n = 1, \dots, T : \text{time} \\ i = 1, \dots, k(n) : \text{number of observations} \end{array}$

2

For each λ , fit the following trend model to the mean time series $y_{\lambda}(n)$ of $q_{i,\lambda}(n)$

 $\nabla^{l} t_{\lambda} = v_{\lambda}(n), \quad v_{\lambda}(n) \sim N(0, \tau \lambda^{2})$ $v_{\lambda}(n) = t_{\lambda}(n) + w_{\lambda}(n), \quad w_{\lambda}(n) \sim N(0, \sigma_{\lambda}(n)^{2}/k(n))$

$$\nabla t_{\lambda}(n) = t_{\lambda}(n) - t_{\lambda}(n-1)$$

 $\sigma_{\lambda}(n)^2$ is estimated by a time-varying variance model (Kitagawa 1987).

Estimate parameters by applying state space modeling (Kitagawa 2010)

 $x_{\lambda}(n) = F x_{\lambda}(n-1) + G v_{\lambda}(n)$ $y_{\lambda}(n) = H x_{\lambda}(n) + w_{\lambda}(n)$

3

Determine an optimal λ by minimizing AIC_{λ} : modified AIC_{λ} (Akaike 1973) to the original spreads (Kitagawa 2010)

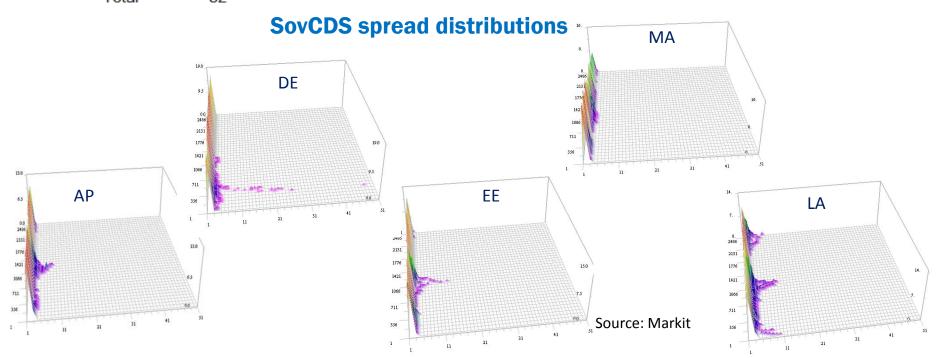
 $AIC_{\lambda} = AIC_{\lambda} - 2\sum_{n=1}^{T} \log \left| \frac{dh}{dz} \right|_{z=z_{\lambda}(n)} \qquad \qquad \frac{dh}{dz} : \text{Jacobian} \\ z_{\lambda}(n) = h^{-1}(y_{\lambda}(n))$

An index is defined by the inverse Box-Cox transformation of the optimal trend.

* Improved version of Tanokura et al. 2012

Countries of five regions

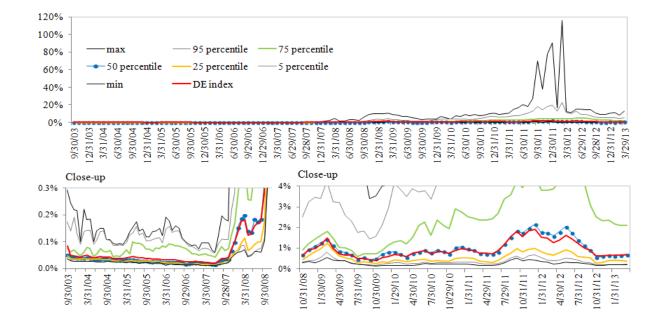
Region				Country			
Asia Pacific	15	Australia	Hong Kong	Japan	New Zealand		
(AP)		China	Fiji	Indonesia	Korea	Malaysia	
		Pakistan	Philippines	Sri Lanka	Taiwan	Thailand	Vietnam
Developed Europe	19	Denmark	Finland	lceland	Ireland	Norway	Sweden UK
(DE)		Cyprus	Greece	Italy	Malta	Portugal	Spain
		Austria	Belgium	France	Germany	Netherlands	Switzerland
Emerging Europe	17	Bulgaria	Croatia	Estonia	Hungary	Kazakhstan	Czech Republic
(EE)		Latvia	Lithuania	Macedonia	Poland	Romania	Russia
		Serbia	Slovakia	Slovenia	Turkey	Ukraine	
Middle East/Africa	16	Angola	Bahrain	Egypt	Ghana	Iraq	Israel
(MA)		Jordan	Lebanon	Morocco	Nigeria	Oman	Qatar
		Saudi Arabia	South Africa	Tunisia	UAE		
Latin America	15	Argentina	Brazil	Chile	Colombia	Costa Rica	
(LA)		El Salvador	Guatemala	Jamaica	Mexico	Dominican Rep Trinidad & Tobago	
		Panama	Peru	Uruguay	Venezuela		
Total	82						



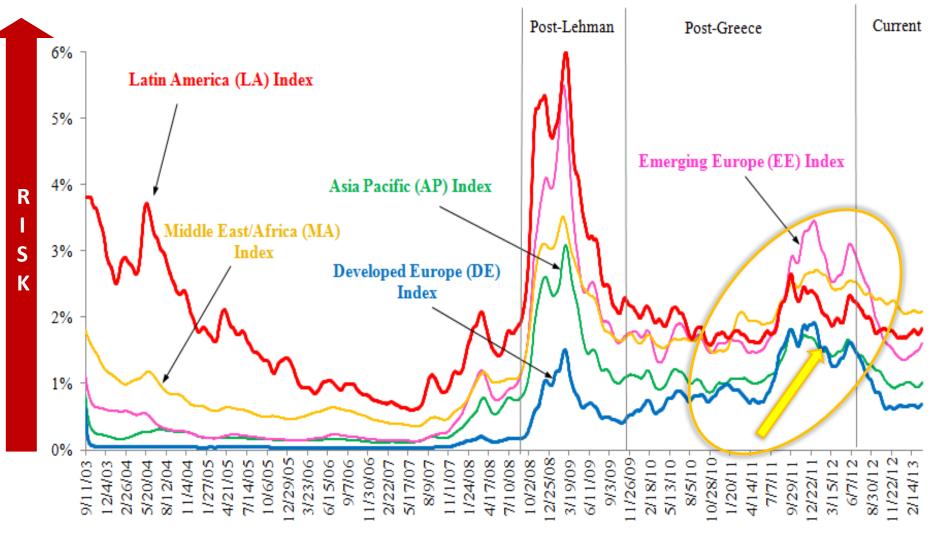
Sovereign risk index and spread distributions

40% 30% 95 percentile 75 percentile max 50 percentile 25 percentile -5 percentile 20% min AP index 10% 0% Close-up 4% 3% 2% 1% 0% 3/31/04 -6/30/05 2/30/05 2/29/06⁻ 3/30/07 -9/30/08 2/31/08 2/31/10 2/31/12 2/31/03 6/30/04 2/31/04 3/31/05 9/30/05 3/31/06 2/31/07 3/31/08 6/30/08 2/31/09 6/30/10 9/30/03 9/30/04 6/30/06 9/29/06 6/29/07 9/28/07 3/31/09 6/30/09 9/30/09 9/30/10 6/30/11 3/30/12 6/29/12 9/28/12 3/31/10 3/31/11 9/30/11 2/30/11

Asia Pacific (AP) Index & spread distributions



Five regional sovereign risk indices



Source: Markit

Fit a multivariate AutoRegressive model and calculate power contributions(PC)

$$\mathcal{X}_n = \sum_{m=1}^M A_m \mathcal{X}_{n-m} + \mathcal{V}_n$$

 $E(v_n) = O, \quad E(v_n v_n^T) = W,$ $E(v_n v_m^T) = O \quad (n \neq m),$ $E(v_n x_m^T) = O \quad (n > m)$

- X_n : 5-dim stationary time series
- A_m : AR coefficient matrix
- V_n : 5-dim white noise
- W: Variance covariance matrix

PC measures the influence between variable fluctuations of the noise at a frequency.

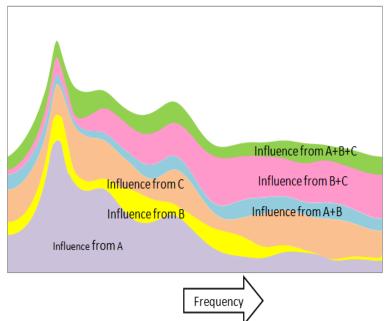
(Akaike 1968, Tanokura and Kitagawa 2004)

Power spectrum (PS) of A: decomposes the fluctuation by frequency

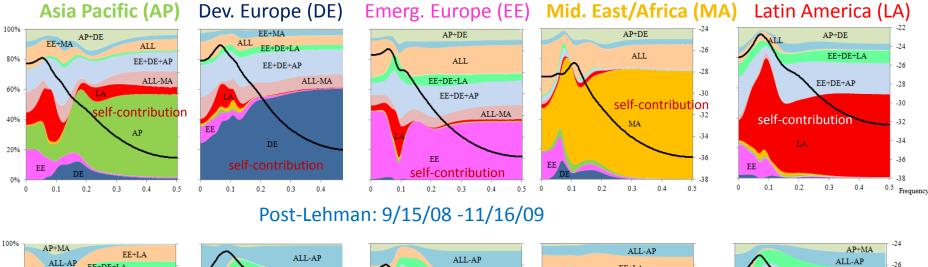
Frequency

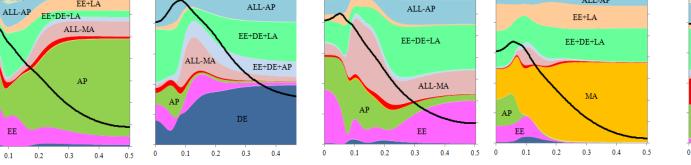
PC of A:

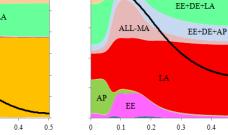
decomposes PS of A into components of variable combinations



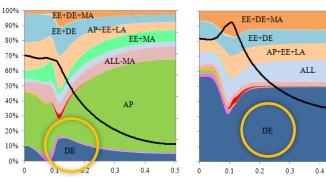
Power contributions (%)







Post-Greece: 11/17/09 -3/8/12



80%

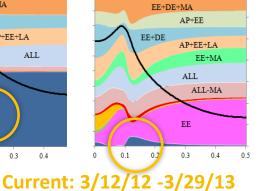
60%

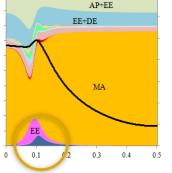
40%

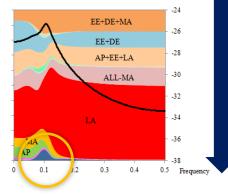
20%

00%

0







-28

-30

-32

-34

-36

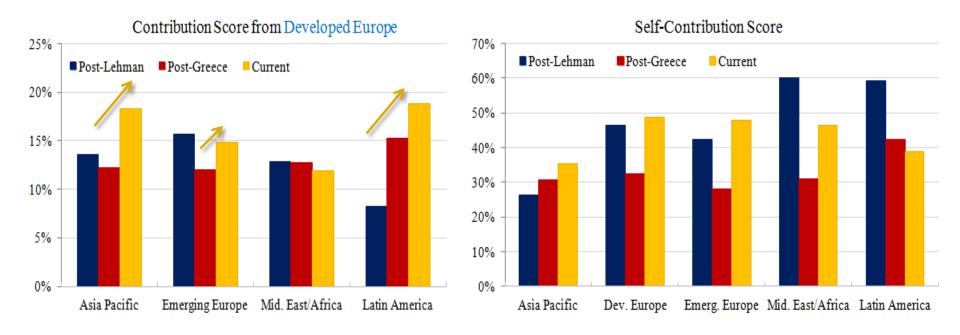
-38

Frequency

0.5

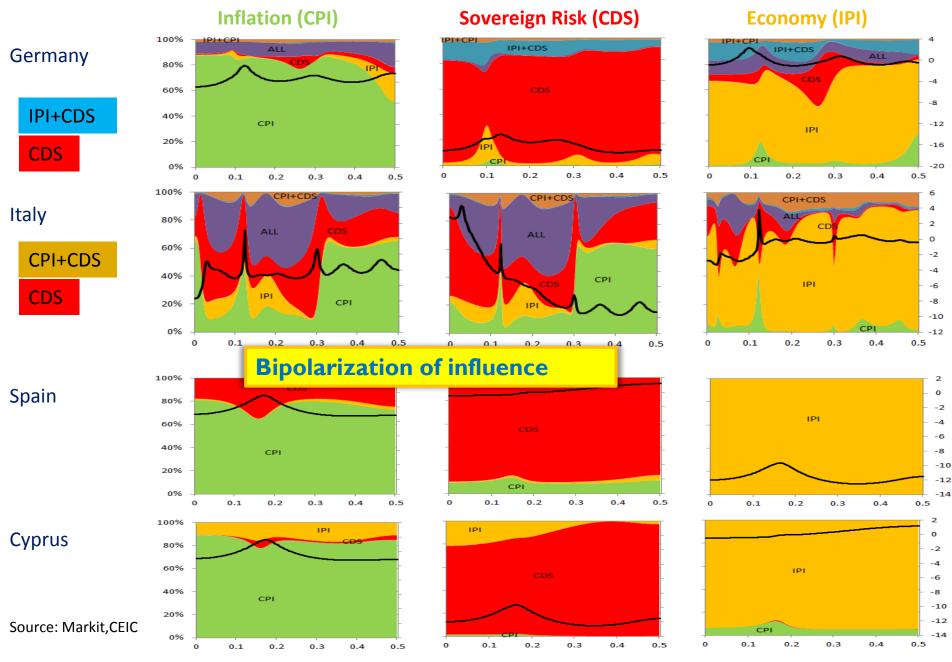
Contribution score (CS)

...is defined as the quantity (% of the total) between two variables based on the sum of the equally allocated the PC value to variables concerned (at the dominant frequency domain of the power spectrum each region).



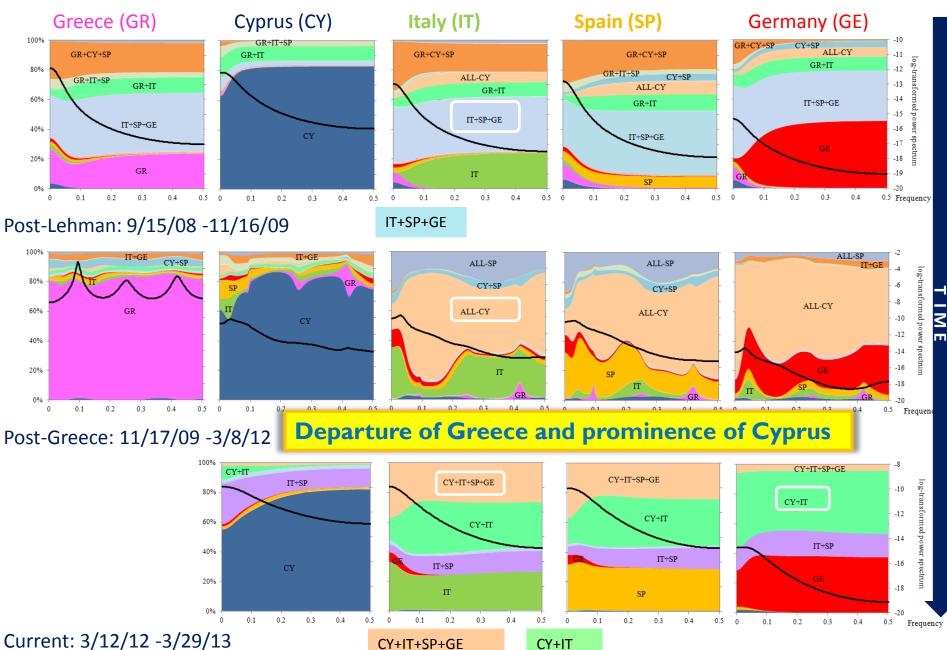
CS from Developed Europe can be regarded as the influence of the European debt crisis. Worldwide spillover effects are almost found. CSs from Developed Europe for the current period become higher!

What happened inside the country in Dev. Europe



11

Influence of sovereign risks between countries



References

- Akaike, H. (1968), On the use of a linear model for the identification of feedback systems, Ann. Inst. Statist. Math. 20, 425-439.
- Box, G. E. P. and Cox, D. R. (1964), An analysis of transformations, The Journal of the Royal Statistical Society. Series B, Vol. 26, No.2 211-252.
- Gersch, W. and Kitagawa, G., (1983), The prediction of time series with trends and seasonalities, Journal of Business and Economic Statistics, 1, 253-264.
- Kitagawa, G. (1987), Non-Gaussian State-Space Modeling onf Non-Stationary Time Series, Journal of the American Statistical Association, 82, 1032-1041.
- Kitagawa, G. (2010), Introduction to time series modeling, Monographs on Statistics & Applied Probability, Chapman & Hall/CRC, Boca Ration.
- Kitagawa, G. and Gersch, W. (1984), A smoothness priors-state space modeling of time series with trend and seasonality, Journal of the American Statistical Association, 79, 378-389.
- Kitagawa, G. and Gersch, W. (1984), A smoothness priors-state space modeling of time series with trend and seasonality, Journal of the American Statistical Association, 79, 378-389.
- Tanokura, Y. and G. Kitagawa (2004), Modeling influential correlated noise sources in multivariate dynamic systems, in: M. H. Hamza (ed.), The 15th IASTED international conference on modelling and simulation, ACTA Press, Marina del Rey, CA, USA.
- Tanokura , Y., Tsuda, H., Sato, S. and Kitagawa, G. (2012), Constructing a Credit Default Swap Index and Detecting the Impact of the Financial Crisis, in: W. R. Bell, S. H. Holan and T. S. McElroy (eds.), Economic Time Series: Modeling and Seasonality, Chapman & Hall/CRC, 359-380.
 - Tanokura, Y., Tsuda, H., Sato, S. and Kitagawa, G. (2013), *Index Development for a Market with Heavy-tailed Distributions, The 59th World Statistics Congress,* Hong Kong, August 25-30, to appear in the proceedings.