Locomotion of Animals, Design of Robots and Mathematics

R. Kobayashi, T. Nakagaki and A. Ishiguro Hiroshima University, JST CREST

Amazing Creature - True Slime Mold

Physarum Polycepahlum

(和名:モジホコリ)

Large single cell organism with multi nuclei

Tubular structure

Physarum can solve a maze !

Nakagaki et al., Nature (2000)

Physarum Solver

Shortest path finding model on the graph

Tero, Kobayashi, Nakagaki, J. Theor. Bio. (2007)

Physarum designs networks !

Real Railroad Network in Tokyo area

Network produced by *Physarum*

Tero et al., Science(2010)

Efficiency \leftarrow Cost \leftarrow Fault tolerance

Extended Physarum Solver

Efficiency, Fault tolerance

Physarum is completely decentralized system !

Ig Nobel Prize

2008 Cognitive Science Prize2010 Transportation Planning Prize

First make people laugh, and then make them think

Locomotion of Animals

Supple, agile, robust motion

Control very large degrees of freedom

Tough under uncertain surroundings

Locomotion of Robots

Completely centralized control Decentralization

Autonomous Decentralized Control

Control policy which attains useful functions by the interactions between local elements having simple ability of sense, judge and motor output

ADC in Animals

Neural ganglion in each body segment

Gait transition of DC cat on treadmill

Central Pattern Generator Neural circuits which generate rhythm Lamprey, Tadpole \longleftrightarrow Mammals Details are still unknown

ADC is OK, but

How can we achieve the emergence of function from such systems ?

1. Dynamics of each component

2. Interaction between components

3. Local sensory feedback

ad hoc design for each case example

Still missing a systematic way of designing ADC !

Outline of Our Project

Goal

Understand the animal's locomotion from the view point of mechanics and control Produce robots which move in supple, agile and robust manner like animals

• Who?

Team consists of Biologists, Mathematicians & Roboticists Mathematics
R.KobayashiSiology
T.NakagakiRobotics
A.Ishiguro

• How ?

Learn from the animals Design robots with large DOF controlled by ADC

Which animal at first ?

Go Back to Physarum !

Completely decentralized system

Driven by distributed oscillator system

High ability Solving a maze and designing networks

Anti-phase Oscillations

Peripheral Phase Inversion

Bottleneck Phase Inversion

Physarum Model ver.1

Kobayashi and Nakagaki (2003) Rediscovered by Ishiguro (2008)

Active spring whose natural length is driven by the phase oscillator ϕ

$$s_n(\phi) = \bar{s}(1 - a\cos\phi)$$
$$p = \beta(s - s_n(\phi))$$
$$\partial_t s = \nabla \cdot (sM\nabla p)$$

 $I = \frac{\sigma}{2}p^2 \quad : \frac{\text{Discrepancy}}{\text{Function}}$

Basic Design Scheme

$$\partial_t \phi_i = \omega_i + \sum_j g_{ij}(\phi_i, \phi_j) - \partial_{\phi_i} I_i$$

 ϕ_i : the *i*-th controller (phase oscillator)

 $oldsymbol{S}_i$: State variable of the i -th actuator

$$I_i(oldsymbol{S}_i,\phi_i)$$

: Frustration accumulated in the i-th unit

Discrepancy Function

Indirect interaction through the body

Our Robots

Slimy

HAUBOT

PENTABOT

Snake Robot : HAUBOT 2

T. Sato (2011)

Joint mechanism

Elastic elements permit discrepancy between the motor angle (target angle) and the actual joint angle

Stiffness is also controllable by twisting

Phasic & Tonic Control

•
$$\partial_t \phi_i = \omega + D(\phi_{i-1} - \phi_i - \Delta \phi) - \partial_{\phi_i} I_i$$

•
$$\partial_t \eta_i = \alpha(\beta I_i - \eta_i)$$

HAUBOT 1 & 2

Phasic Control	Tonic Control
phase adjustment	stiffness adjustment
Energetic efficiency	Powerful motion

HAUBOT 1

Phasic control only

HAUBOT 2

Phasic & Tonic control

NTF Award Finalist for Entertainment Robots and Systems (IROS2011)

OSCILLEX series

脚先位置の制御 ϕ_i $\pi/2$ Swing phase π A_1 A_2 A_3 A_2 A_3 A_2 A_3 A_4 A_2 A_3 A_4 $A_$

Control rule

$$\begin{array}{c} \partial_t \phi_i = \omega - \sigma N_i \cos \phi_i \\ \uparrow & \uparrow \\ \\ \text{Control parameter} \\ \text{Load at the toe} \\ \text{from the center} \end{array}$$

No direct interaction between controllers, but indirect interaction through the body

Try to keep the leg in stance phase if loaded

Why we call it OSILLEX ?

$$\partial_t \phi_i = \omega - \sigma N_i \cos \phi_i$$

Go back and force between Oscillatory & Excitable mode

Quick transition to the stationary walking

OSCILLEX 3.1

Significance of OSCILLEX

 $\partial_t \phi_i = \omega - \sigma N_i \cos \phi_i$ Control Body *Morphological* **Brain** Slide Bar System System computation computation 100% 100% 0% 0% Completely Implicit Explicit Completely Implicit Control Control Control Explicit Control Manmals + Insects

> Successful example of attaining Adaptive Behavior by the balance of Explicit Control and Implicit Control

- We extracted the concept of discrepancy function from the model of Physarum.
- The design scheme of ADC using discrepancy function was implemented to our robots, and it worked very well.
- Do not design the complicated explicit control rule.

