Mathematical Understanding of Spot Replication in Reaction-Diffusion Systems

Chiun-Chuan Chen (National Taiwan University)
and

Theodore Kolokolnikov (Dalhousie University, Canada)

MIMS/CMMA International Conference on Mathematical Modeling and Applications Meiji University, 2013/11/26-28

Phenomenon of Spot Self-replication

1. spot replication was first observed by Pearson in the Gray-Scottmodel (Science, 1993)

$$u_t = d_u \Delta u + u^2 v - au$$

$$v_t = d_v \Delta v - u^2 v + b(1-v)$$

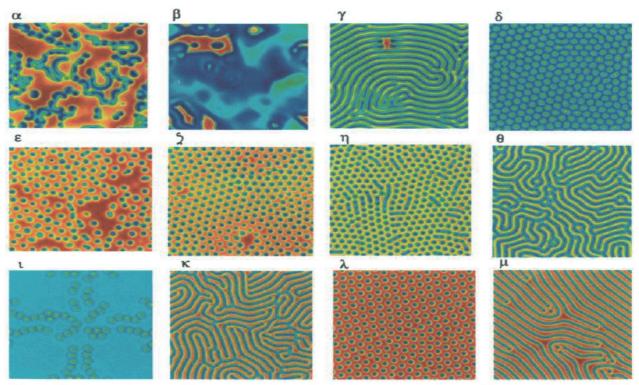


Fig. 2. The key to the map. The patterns shown in the figure are designated by Greek letters, which are used in Fig. 3 to indicate the pattern found at a given point in parameter space.

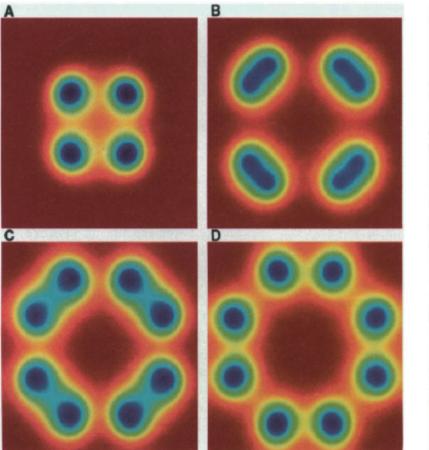


Fig. 4 (**left**). Time evolution of spot multiplication. This figure was produced in a 256 by 256 simulation with physical dimensions of 0.5 by 0.5 and a time step of 0.01. The times t at which the figures were taken are as follows: (**A**) t = 0; (**B**) t = 350; (**C**) t = 510; and (**D**) t = 650.

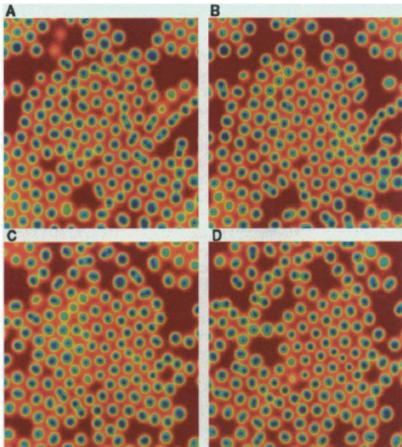


Fig. 5 (**right**). Time evolution of pattern ε . The images are 250 time units apart. In the corners (which map to the same point in physical space), one can see a yellow region in (**A**) to (**C**). It has decayed to red in (**D**). In (A) and (B), the center of the left border has a red region that is nearly filled in (D).

Conditions proposed by Nishiura and Ueyama

(S1) Disappearance of ground-state solution due to a fold point (saddle-node bifurcation) that occurs when a control parameter is increased above a threshold value (S2) Existence of a dimple eigenfunction associated with a zero eigenvalue at the fold point, which is believed to be responsible for the initiation of the self-replication process (S3) Stability of the steady-state solution on one side of the fold point near which the self-replication will occur. (S4) Alignment of the fold points, so that the disappearance of k ground states, with k = 1, 2, 3, ..., occurs at roughly the same value of the control parameter

Dimple shape

Simple model of spot replication

Simplified Gierer-Meinhardt model

$$u_t = \varepsilon^2 \Delta u - u + u^p v^{-1}, \quad 0 = D \Delta v - v + u^m v^{-s}$$

Shadow system $D \to \infty$, $\varepsilon \to 0$: $u_t = \Delta u - u + u^p \left(\int u^m \right)^{\frac{-1}{1+s}}$.

Consider v as a control parameter. $v^{-l} \sim \frac{1 + a|x|^q}{\left(\int u^m\right)^{\frac{l}{1+s}}} \sim \frac{1 + a|x|^q}{\int u^m}$

"Simplest Model"

$$u_t = \Delta u - u + \frac{(1+a|x|^q) u^p}{\int_{\mathbb{R}^N} (1+a|x|^q) u^{p+1} dx}, \ \ x \in \mathbb{R}^N; \ \nabla u(0,t) = 0, u > 0.$$

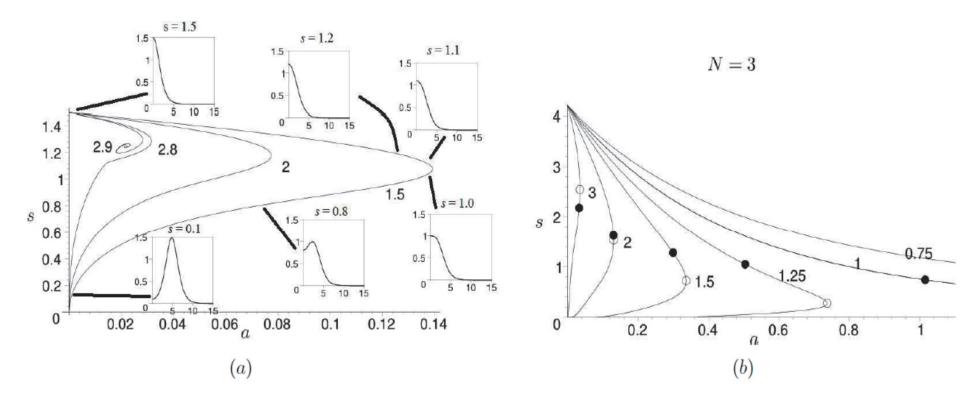
$$c_1^{1/(1-p)}u \to u$$
, where $c_1 = (c_0 \int_0^\infty r^{N-1} (1+ar^q)u^{p+1}dr)^{-1}$

$$\Delta u - u + (1 + a|x|^q) u^p = 0, u > 0 \text{ in } \mathbb{R}^N$$

Bifurcation diagram

$$u_{rr} + \frac{N-1}{r}u_r - u + (1 + ar^q)u^p = 0, \ u'(0) = 0, \ u \to 0 \text{ as } r \to \infty.$$

$$s = u(0), p = 2$$



Existence of a fold point

Nonexistence of solutions for large "a"

Theorem (Chen-Kolokolnikov, SIAM 2012)

$$a \ge 0$$
, $s = u(0)$, $p^* = \begin{cases} (N+2)/(N-2), & N \ge 3 \\ \infty, & N \le 2 \end{cases}$
 $q^* = \frac{(p-1)N}{2}$; $q_c = \frac{(p-1)(N-1)}{2}$. Then

- (i) Suppose that $p \in (1, p^*)$ and $q \ge 0$. Given any constant $a_0 > 0$, there exists a constant $s_0 = s_0(a_0, p, q)$ such that if $0 \le a < a_0$ then the solution does not exist if $s > s_0$.
- (ii) Suppose that either $N \ge 3$ and $q > q_c$ or else $N \le 2$ and $q > q^*$. There exists a constant a_0 such the solution does not exist if $a > a_0$.
- (iii) If $N \ge 3$, $0 \le q < q_c$ then the solution exists for all $a \ge 0$, provided that 1 .

Non-local problem

Method developed by J. Wei ('99). Fold point (a_c, s_c) .

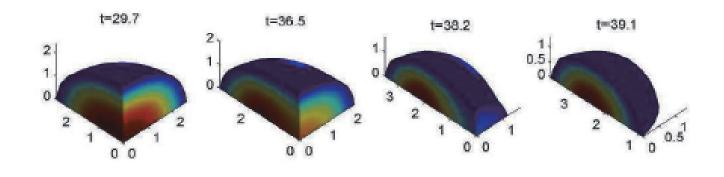
Lemma

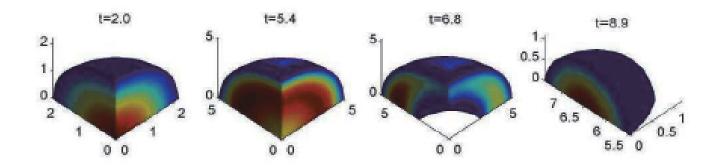
- (1) Suppose the local problem admits a unique positive eigenvalue. Then the nonlocal problem is stable, i.e. it has no positive eignevalues.
- (2) Suppose the local problem admits at least two positive eigenvalues. Then the nonlocal eigenvalue problem is unstable, i.e. it admits at least one positive eigenvalue.

Theorem

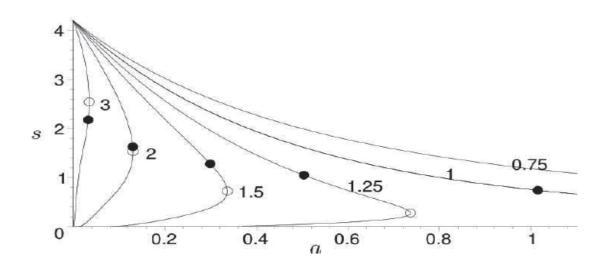
- (1) If $s = s_c$, then non-local eigenvalue problem admits a zero eigenvalue whose eigenfunction is given by $Z = \frac{\partial u}{\partial s}|_{s=s_c}$. Moreover Z(r) has at least one root r > 0. Thus Condition (S2) is proved.
- (2) It $s \in (s_c, s_0]$, then the nonlocal eigenvalue problem is stable with respect to radially symmetric perturbations. This verifies Condition (S3).

Non-radial behavior: peanut splitting

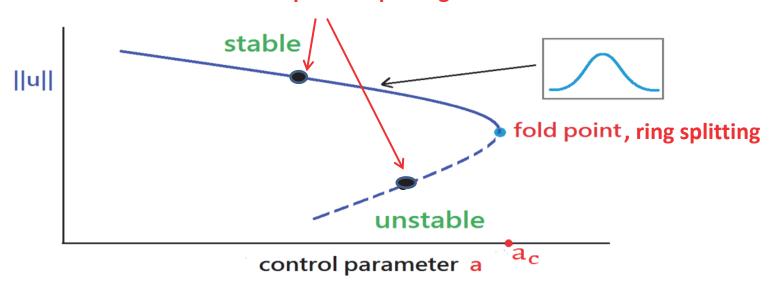




Numerical and asymptotic analysis



peanut splitting



Conclusion

- 1. In general, one needs at least two equations to produce the phenomenon of spot self-replication. We propose a simple one equation model with a nonlocal term.
- 2. To obtain a fold-point structure, we prove a new Liouville theorem with big control parameter "a" for our model.
- 3. The conditions (S1), (S2) and (S3) proposed by Nishiura and Ueyama are rigorously verified for the radial case in our model.
- **4.** The peanut splitting for the non-radial case is studied by asymptotic and numerical analysis.