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Can a polyhedron constructed from paper or similar flexible material be flattened without
stretching or cutting? This problem was proposed by E. Demaine et al. in 2001 ([1]). 1. Sabitov
proved that a polyhedron does not change its volume under flexing, if shapes of the faces are
fixed; so, we need an infinite number of line segments to move creases for changing shapes of
some faces, leading to a flattened polyhedron. Three methods for continuous flattening of
convex (and some non-convex) polyhedra have been shown by the author et al. (see [2] for
example). We define a continuous flattening process of a polyhedron as a family of
polyhedra each of which is intrinsically isometric to the original polyhedron and converges to a
flat folded state where a polyhedron is permitted to touch itself without self-intersection. Fig. 1
shows a flat folded state of a rhombic dodecahedron.

Recently, Obervelde et al. presented interesting papers [3, 4] which were related to “Snapology” (see [5]).
For a convex polyhedron, remove all faces and attach an excluded prismatic tube to fit the boundary of each
face. The resulting figure may be flexible. If we choose, some faces remained as rigid faces instead of
attaching extruded tubes, and if the resulting figure is transformable to a shape such that the part of the original
polyhedron is flat folded, we say that the model has the shape-shifting property. They showed models with
such property for 28 space-filling shapes. We investigated parallelohedra (whose typical
representatives are the cube, the hexagonal prism, the truncated octahedron, the rhombic
dodecahedron, and the elongated rhombic dodecahedron) for the property. In this talk, we show
our results, and models in Fig. 2 are examples of shape-shifting ones of a rhombic

dodecahedron.
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As a satellite is launched into orbit by a rocket, large space structures such as solar power panels
and antennas must be deployable and modular assembled structures. According to increase in
observation frequency and sensitivity, not only larger but also more precision space structures are
required. Therefore, we have worked to develop new optical surface shape measuring methods
enable to grasp surface shape of large space structures with high precision and high speed on orbit
for future space antenna and telescope These methods are applicable to testing such structures on
ground. In these methods, we analyse phase values of projected or painted grating patterns on the
structures and perform calibration using a reference plane.

The advantages of our methods are as follows. 1) They realize high density measurement by
analysing the phase of the projected or imparted grating pattern. 2) They realize high speed ant
high precision measurement by calibration using reference plane. 3) They realize wide range
measurement without degrading measurement precision by integrated results of multiple
measurement systems.

In order to construct ultra-light weight large space structures, they must be composed of thin plate,
membrane and mesh. In these flexible structures, shapes changed depending on application of
tension, dynamics including vibration is complicated, and phenomenon such as wrinkling and
buckling are caused. Therefore simultaneous measurement over entire surface with high precision
and high speed is required. Furthermore it is important that measuring devices and systems must
be simple and robust as possible considering measurement on orbit. Our measurement method
meets these requirements. In this presentation, we will show some measuring results for thin plate
and membrane surface.
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Deformation mechanism on gripper bending process of origami forming
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1. Introduction

Origami forming has big merits on its application to improve the flexibility of structure designs. In order to
get the high quality of products by origami forming, deformation mechanism on bending process using
gripper is investigated in this paper based on measurements and FEM calculations [1].

2. Measurements and FEM calculations

Fig.1 represents FEM model as an example of grooved steel sheets, which consists of 6 types (=2 X3,
grooving in bending inner/outer side, long/standard/short grooving length size). The depth of grooving is half
of sheet thickness. The standard grooving length is the same size as thickness. Mises stress distribution in
Fig.3, which is big spring back case, has stress concentration area at all bending arc due to long grooving
length. On the other hand, that of Fig.4, which is small spring back case, has stress concentration area at
limited bending arc. Because grooving length in Fig. 4 is much shorter than that of Fig.3. FEM results show

clearly deformation mechanism on gripper bending.

Moving Gripper pair

Gripper pair
(22 % 60)

Steel sheet
(1.2x50x135)

Bending dcgree
O,=120°

Gripper & grooving
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Fig.1 FEM model for gripper bending. Fig.2 An example of bending tests.
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Fig.3 Mises stress distribution of big spring back case. Fig.4 Mises stress distribution of small spring back case.
3. Conclusions

Deformation mechanism on gripper bending as many typical phenomena (big spring back, spring back less,
cracks and wrinkles) can be explained clearly based on measured data and FEM results.

Reference

[1] Terada, K., Sato, H., Tokura, S., Hagiwara, . and Takahashi, S.,” The mechanism of metal sheets bending with
grooving” The Proceedings of the 66th Japanese Joint Conference for the Technology of Plasticity, No.553, 201.
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A polyomino is a “simply connected” set of unit squares introduced by Solomon W. Golomb in 1954
[7]. Since then, polyominoes have been playing an important role in recreational mathematics (see, e.g.,
[5]). In 1962, Golomb also proposed an interesting notion called “rep-tile”: a polygon is a rep-tile of
order k if it can be divided into k replicas congruent to one another and similar to the original (see [6,

Chap 19]).
From these notions, Abel et al. proposed a new notion [1]; a polyomino
is said to be a rep-cube of order k if it is a net of a cube (or, it can fold to /\

a cube), and it can be divided into k polyominoes such that each of them
can fold to a cube. If all £ polyominoes have the same size, we call the
original polyomino a regular rep-cube of order k. We note that crease lines
are not necessarily along the edges of the polyomino. For example, a regular
rep-cube of order 2 folds to a cube by folding along the diagonals of unit
squares. In Figure 1, each T shape can fold to a cube, and this shape itself
can fold to a cube of size V2 x v/2 x /2 by folding along the dotted lines. S ¢

In [1], Abel et al. propose regular rep-cubes of order k for each k =
2,4,5,8,9,36,50,64, and also k = 36gk’> for any positive integer k' and
an integer ¢ in {2,4,5,8,9,36,50,64}. In other words, there are infinitely
many k that allow regular rep-cube of order k. On the other hand, they
left an open problem that asks if there is a rep-cube of order 3. We solved
this question negatively. There are no regular rep-cube of order 3. From this result, we imply a weak
dichotomy of positive integers k£ that may allow or not to have regular rep-cubes of order k.

We enumerated all possible regular rep-cubes of order k for small k. We mention that the following
problem is not so easy to solve efficiently; for a given polygon P, determine if P can fold to a cube or
not. Recently, Horiyama and Mizunashi developed an efficient algorithm that solves this problem for a
given orthogonal polygon, which runs in O((n + m)logn) time, where n is the number of vertices in P,
and m is the maximum number of line segments that appears on a crease line [8]. We remark that the
parameter m is hidden and can be huge comparing to n. In our case, P is a polyomino, and this hidden
parameter is linear to the number of unit squares in P, and hence our algorithm is simpler.

Finally, we investigated non-regular rep-cube. In [1], Abel et al. also asked if there exists a rep-cube
of area 150 that is a net of a cube of size 5 x 5 x 5 and it can be divided into two nets of cubes of size
3 x3x3and 4 x 4 x 4. This idea comes from a pythagorean triple (3,4,5) with 32 + 42 = 52. We
gave a partial answer to this question by dividing into more pieces than 2. Precisely, we proposed a
general method for any pythagorean triple (a,b,c) with a < b < ¢ to obtain a five piece solution. That
is, for any given pythagorean triple (a,b,c) with a < b < ¢, we construct a polyomino that is a net of
a cube of ¢ X ¢ X ¢, and it can be divided into 5 pieces such that one of 5 pieces can fold to a cube of
a X a X a, and gluing the remaining 4 pieces, we can obtain a net of a cube of b x b x b. An example for
the pythagorean triple (3,4, 5) is given in Figure 2, and another one for the pythagorean triple (5,12, 13)
is given in Figure 3.

Figure 1: A regular rep-
cube of order 2 [1].

OThis paper is a survey of recent results in [1, 11].



Figure 2: The set S(3,4,5) of ﬁve.polyominoes Figure 3: The set S(5,12,13) of five polyominoes
that folds to (a,b) two cubes of size 3 x 3 x 3 that folds to (a,b) two cubes of size 5 x 5 x 5 and

and 4 x 4 x4, and (c) one cube of size 5 x5 x 5. 12 x 12 x 12, and (c) one cube of size 13 x 13 x 13.
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1 Introduction

Imaginary flat origamis, which are suggested in this paper, are algebraic representations of flat origamis which represent
the relation of folding steps configured a pair of operations and partial orders. Flat origamis are not always represented
by composite mappings because there exists methods of folding such that developing some parts of a paper (see Figure 1
right). However, operations can represent developing a folded paper. Moreover we can verify that the Maekawa’s theorem
and Kawasaki’s theorem hold as properties of imaginary flat origamis. Therefore, we can prove them as algebraic theorems.

2 Imaginary flat origamis

An imaginary flat origami is a partially ordered set defined as follows:

((fml"'fmnm)"'(fll"'flnl)Aa jm) (1)
A'is a compact set in R? and f11, ..., fin, are folding lines passed the interior of A. They separate some parts Ay, Ag, ..., Ay,
from the set A. We define an operator (fi1--- fin,) as a reflection by one of fi1,..., fi, (or the composite function or the

identity function) in each Ay, As, ..., Ag,, that is, the image (f11 - - fin, )A represents the state of A folded by fi1,..., fin,-
Moreover, We define A; <1 A; or A; =1 A; for any parts A;, A; such that the intersection of the interior of (fi1--- fin,)A
and (fi1--- fin,)A; is empty. Then the partially ordered set ((fi1--- fin,)A, =1) is a imaginary flat origami.

Next, we consider that the image (fi1:-- fin,)A is folded by the lines fo1,..., fon,. Then fi1,..., fin, and the devel-
oped fonding lines ((f11 -+ fin,)) " fo1s -+, (i1 fin,)) "L fon, separate smaller parts By, Ba, ..., By, from the set A than
Ay, Ag, ..., Ay, We define an operator (fo1--- fan,)(f11 - fin,) as a reflection by one of fa1,..., fan, (or the composite
function) in each (,fll cee flnl)Bla (f11 cee f1n1)327 ey (f11 cee flnl)BkQ- Moreover, We define B; <o Bj or B; > Bj for
any parts B;, B; such that the intersection of the interior of (fa1 - fon,)(f11 -+ fin,)Bi and (fo1 - -+ fon,)(fi1 - fin,)Bj is
empty. Then the partially ordered set ((fa1 -+ fon,)(fi1 -+ fin,)A, X2) is a imaginary flat origami.

By induction, we can define (1) as a generalized imaginary flat origami. It can make a paper crane and its 10 folding steps

for example.
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Figure 1: Some folding steps of a paper crane

3 Properties of Imaginary Flat Origamis

1-vertex foldable flat origamis are imaginary flat origamis which are not broken and have only one point where creases
meet in the interior of the set A. The following statements hold.

Theorem 1 (Maekawa [1]). the difference in the numbers of mountain creases and valley creases is 2

Theorem 2 (Kawasaki [1]). the sum of the alternate angles of each adjacent creases is
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Special Talk

The Central Role of Combinatorics in Origami

Dr. Thomas C. Hull
(Western New England University)

The art of origami is inherently geometrical, and a lot of the
mathematical research done on origami centers around
geometry. However, combinatorics (the mathematics of counting
things) plays a very important role in understanding how paper,
or any material, can fold. Maekawa's Theorem is a well-known
example. This talk will describe some of the mathematical results
known (and not known) for counting the number of ways an
origami crease pattern can fold flat, that is, counting the number
of valid ways to assign mountain and valley creases to a crease
pattern. We will highlight the importance of such enumeration
research in recent applications of origami in physics and
engineering.
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Application of pairing origami structure to aluminum cans
—Comparison of TMP and NP from the viewpoint of rigid folding and crushing force
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Abstract. Polyhedrons by Nojima and by Tachi-Miura, which both are two symmetrical origami structures,
can be folded in the axial or radial direction, and it is convenient if they can be applied to aluminum cans. We
studied the crushing characteristics of both structures from the viewpoint of rigid folding, and explore their
possibility.
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Origami in Architecture: Concept | Configuration | Construction
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We will show how origami technique or folding has been used for architecture both in design concepts
and their realization. Folding is a method for manipulation of form, form finding and composition of
spaces. It is useful for adjusting functional spaces to the programming requirements and enhancing
visual effects for facades and interior spaces. Folding is useful also in tectonic aspects in architecture
and building construction. Corrugated metal sheet, folded metal roof, folded plate structure and foldable
building elements are ubiquitous. We look into the future possibility of strategic integration of folding

from the concept to the realization.
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Endless House (1924,1950,1960) Villa VPRO model (1993-1997)
Frederick Kiesler (1890-1965) MVRDYV (1993-)
The un-built project demonstrated the continuous The public broadcasting center’s folded floor was
connectivity of spaces or folded spaces. realization of the integration of the program

link requirements and the functional space.
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3D-Modeling for the Developments of Polyhedra
Takashi Horiyama

Graduate School of Science and Engineering, Saitama University, Japan

A development of a polyhedron is a simple polygon obtained by cutting edges or faces of the polyhedron and
unfolding it into a plane. While we can realize a development by a paper (i.e., we can draw it on a paper), we
may have troubles when we fold it into a polyhedron. Since it has no thickness, the folded polyhedron is
fragile. More precisely, the hinge is flexible enough to be bend with at most 180 degrees, and thus we cannot
fix the dihedral angles between adjacent faces.

To avoid such trouble, we use the technique of rigid-foldable thick origami [1]. By this technique,
zero-thickness ideal facets (denoted by red lines) are realized by thick panels: First offset the ideal facets by
constant distance in two directions, and then trim facets by the bisecting planes of dihedral angles between
adjacent facets.

If we trim the facets in the same side, all facets are folded in that side. If two polyhedra have a common
development of the same shape (see e.g., [2], [3]), we can realize it so that it can be folded into the two
polyhedra: We prepare hinges on the place where at least one polyhedron has a folding line. One side of the
hinges is trimmed if they correspond to a polyhedron, and the other side is trimmed if they correspond to
another polyhedron.
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(Reversing of regular polyhedra with slits)

Jin-ichi Itoh (Kumamoto University)

(Joint work with Naofumi Horio)

Recently H. Maehara defined an origami-deformation of a polyhedral surface with
boundary in Euclidean space, and he showed that every rectangular tube can be
subdivided so that it becomes reversible (it is called s-reversible).

In this talk we discuss on the reversibility of regular polyhedra with several slits around
vertices. In the case of cube and icosahedron, if we cut them along all edges around

antipodal vertices, we get tubes, then they become s-reversible.

Theorem. Octahedron with slits as Figure 1 is s-reversible. Tetrahedron with slits as

Figure 2 is s-reversible. Cube with slits as Figure 3 is s-reversible.

Figure 1

—

Figure 2

Figure 3

[1] H.Maehara: Reversing a polyhedral surface by origami-deformation, European Journal
of Combinatorics 31 (2010), 1171-1180



Development of Origami structure superior to present ener((giy-absorbing
vehicle structure by ultra-cheap forming metho
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Ichiro Hagiwara #kJ/i—H5 (Meiji University)

Abstract. Current vehicle energy absorbers have two defects during collision, only 70 % collapsed in its
length and high initial peak load. We have found so called Reversed Spiral Origami Structure (RSO) can
solve these defects. However, the manufacturing cost is too high to be applied in real vehicle structure. To
address the problems, a new structure, named Reversed Torsion Origami Structure (RTO), has been developed,
which can be manufactured at a low cost by using simple torsion of Origami engineering. This structure is
possible to replace conventional energy absorbers and expected to be widely used such as in building
structures.
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Fig.l1 Load-displacement characteristics Fig.2 Schematic drawing of the three steps in the torsion

forming process: (1) fix the first segment and twist
the third segment through a certain angle, thus
deforming the second segment; (2) move the dies
one segment along the axial direction; (3) repeat step
(1), twisting in the opposite direction.
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