Scaling in the *Physarum* Amobae during locomotion: size vs shape, speed, rhythm

Shigeru Kuroda

Research Institute for Electrical Science, Hokkaido University

MIMS Workshop"反応拡散現象にみられる境界層とその周辺の数理",

Nov 28, 2014

Outline

Backgournd

•Self-organized Phenomena as Directional locomotion of Amoeba cell

•Various size in Physarum amoebae

•Experimental

- Methods
- Results

•A Math. Model

•Amoeba locomotion with large fluctuated speed as Traveling wave-like solution in non-autonomous R-D systems

Outline

Backgournd

•Self-organized Phenomena as Directional locomotion of Amoeba cell

•Various size in Physarum amoebae

•Experimental

Methods

Results

•A Math. Model

•Amoeba locomotion with large fluctuated speed as Traveling wave-like solution in non-autonomous R-D systems

Biological scaling (allometry)

- •The study of the relationship of <u>body size</u> to the other characteristics (ex) basal metabolic rate, cardiac rate, size of body parts, speed, shape, ...).
- •referred as allometry in zoology.

Body height (cm)

Why are the scalable properties important?

It does not involve chance but instead tells us about the physical laws behind biological behaviour.

In particular,

the observation of scaling laws that hold across size differences of several orders of magnitude may lead to substantial revisions in the understanding of not only the field of interest but also in many other fields of study.

metabolic rate $\propto m^{3/4}$

Background

Slime mould (*Physarum* Policepharum)

- Multinucleus single-cell organism with amoeboid movement
- Nuclear division without cell division occur per
 10 hour
- •Large variation of cell size: 10⁻⁵m ~ 1m
- Experimental convenience of size manupulation:

fuse and cut

Growth of single-nucelus unicelluar organism

Nuclear division with cell division

Growth of multinucleus unicelluar organism (Physarum)

Nuclear division without cell division

Set Experimental convenience of size manupulation:

fuse cut

 \Rightarrow Body size can thus be regarded as a system parameter !

Background

Directional movement of the cell as self-organized phenomenon

Plasmodium of True slime mould

Note. In our body, there are many kinds of cells using amoeboid motion. (ex) White blood cell (leukocyte), Epithelial cell, Cancer

speed x 3600

Small piece taken from a large Physarum amoeba

Background

Slime mould with various size during locomotion

• Static allometry

the size dependency of the time-averaged characteristics

Ontogenetic allometry

the characteristics changes throughout its development

Outline

Backgournd

•Self-organized Phenomena as Directional locomotion of Amoeba cell

•Various size in Physarum amoebae

Experimental

- •Methods
- Results

•A Math. Model

•Amoeba locomotion with large fluctuated speed as Traveling wave-like solution in non-autonomous R-D systems Service Experimental environment 1 w%agar, room temp. 24±1℃, the humidity inside the apparatus 90%RH more than six hour measurement of one directional locomotion \odot Smaller slime moulds (< 0.1 μ L (n=13)) allowed to move freely on agar plate ($\phi = 9$ cm) In placed on narrow agar lanes (width 0.5, 1, 2, 4, 2, 4)

or 8 mm) in order to limit the num of advancing front to one or to confine locomotion to 1-dim.

For smaller size(< $0.1 \mu L$)

Measurement of thickness

Optical density (x,t)

Smaller slime moulds (< 0.1 μ L (n=13)) allowed to move freely on agar plate (ϕ =9cm)

Coordinate system and longitudinal shape

Longitudinal coordinate and its perpendicular axis.

Characterisation of longitudinal shape

 $h'(x, t) = maxy \in l(x, t) h(y, t)$

The second s

In placed on narrow agar lanes (width 0.5, 1, 2, 4, or 8 mm) in order to limit the num of advancing front to one or to confine locomotion to 1-dim.

03:27:00

Regular oscillations in thickness with a period of 60– 120s that involves protoplasmic flow inside the body

Averaging of variables over intrinsic period (T₀) of thickness oscillation

Outline

Background

•Self-organized Phenomena as Directional locomotion of Amoeba cell

•Various size in Physarum amoebae

Experimental

Methods

Results

•A Math. Model

•Amoeba locomotion with large fluctuated speed as Traveling wave-like solution in non-autonomous R-D systems

• Static allometry

the size dependency of the time-averaged characteristics

•Background

•Self-organized Phenomena as Directional locomotion of Amoeba cell

•Various size in Physarum amoebae

•Experimental

Methods

Results

•A Math. Model

•Amoeba locomotion with large fluctuated speed as Traveling wave-like solution in non-autonomous R-D systems

Localization of the locomotion engine in the frontal part

(from Takagi, S. et al 2007)

Traveling wave in reaction diffusion system with slow modulation

Discussion

Scalable vs. Non-scalable properties

What is the origin of the difference between them? One probable reason is that: <u>the size-independent properties</u> result from <u>biochemical processes</u> because chemical reaction speed mainly depends not on the body size itself but on the chemical characteristics of the substances involved.

<u>the size-dependent properties</u> may result from <u>physico-mechanical</u> <u>processes</u>. If so, they are likely to be quite general properties that hold for a wide range of organisms.