A thresholding algorithm for hyperbolic mean curvature flow

Elliott Ginder

北海道大学 電子科学研究所
Joint work with
Karel Svadlenka
金沢大学 理工研究域

反応拡散現象にみられる境界層とその周辺の数理 2014年11月28日

Outline

1. Curvature dependent motions

$$
\begin{array}{ll}
\star & v=-\kappa \\
\star & \text { (Mean curvature flow) } \\
\star & \frac{d v}{d t}=-\kappa \\
(\text { Hyperbolic MCF })
\end{array}
$$ (see J. Math. Pures Appl., P. LeFloch and K. Smoczyk 2008)

2. An approximation method for HMCF
\star The original BMO (mean curvature flow)

* The hyperbolic BMO
+ Justification of our thresholding algorithm.

3. Application of the numerical method.
\star Hyperbolic mean curvature flow (HMCF)
\star Multiphase HMCF
\star Volume preserving HMCF, contact angles, numerical tests

Interfacial dynamics

What does curvature-driven acceleration look like?

Mean Curvature Flow
$v=-\kappa$

Hyperbolic Mean Curvature Flow

$$
\frac{d v}{d t}=-\kappa
$$

Physical interpretation (membrane motion)

Wave equation

Nonlinear wave equation

Hyperbolic mean curvature flow

Computational Tools

Front tracking

- explicitly evolve nodes
- simple to implement
- development of singularities causes difficulty

Threshold dynamical algorithms

Merging

Computational Tools

Front tracking

- explicitly evolve nodes
- simple to implement
- development of singularities causes difficulty

Threshold dynamical algorithms

Multiphase Vol. Pres.
Merging
Topological changes

The scalar BMO algorithm (1992) (Bence-Merriman-Osher)

Evolve by mean curvature flow $\quad v=-\kappa \quad 0<\Delta t \ll 1$

$$
\left\{\begin{array}{lr}
u_{t}=\Delta u & \text { in }(0, \Delta t) \times \Omega \\
\frac{\partial u}{\partial \nu}=0 & \text { on }(0, \Delta t) \times \partial \Omega \\
u(t=0, x)=\chi_{E} & \text { in } \Omega
\end{array}\right.
$$

Initial condition \longrightarrow Heat operator \longrightarrow Truncate
$u_{0}=\chi_{\{u(t=\Delta t, x)>1 / 2\}}$
$\Gamma_{k}=\partial\{u(t=\Delta t, x)>1 / 2\}$

Reformulated multiphase (vector-type) BMO algorithm:

$$
\mathbf{p}_{k} \in \mathbf{R}^{N-1}:
$$

coordinates are given by the vertices of a regular simplex in \mathbf{R}^{N}.

2-phase

for $k=1, \ldots, M A X$ do
set $\mathbf{u}_{0}(x)=\mathbf{p}_{i}$ for $x \in E_{i} \quad i=1, \ldots, N$
in $(0, \Delta t) \times \Omega$
on $(0, \Delta t) \times \partial \Omega$
$\mathbf{u}(t=0, x)=\mathbf{u}_{0} \quad$ in Ω
Truncation

$$
E_{i}=\left\{x \in \Omega: \mathbf{u}(\Delta t, x) \cdot \mathbf{p}_{i}=\max _{j=1, \ldots, N} \mathbf{u}(\Delta t, x) \cdot \mathbf{p}_{j}\right\}, i=1, \ldots, N
$$

$$
\Gamma_{k}^{i}=\partial E_{i}, i=1, \ldots, N
$$

Evolve the curve end

Curvature Dependent Motions

$$
v=-\kappa
$$

mean curvature flow

Volume constrained motions

E_{5}	DE	Interfacial motion
E_{4}	E_{1}	$\mathbf{u}_{t}=\Delta \mathbf{u}+\sum_{i=1}^{N-1} \lambda_{i} \mathbf{p}_{i} \mathcal{H}^{m-1}\left\lfloor\partial E_{i}\right.$
$v_{i}=-\kappa_{i}+\tilde{\lambda}_{i}$		

$E_{6} \quad E_{3} \Omega$

PDE

$v_{i}=-\kappa_{i}+\tilde{\lambda}_{i}$

Vector-type minimizing movement: $\mathbf{u}, \mathbf{u}_{n-1} \in H^{1}\left(\Omega ; \mathbf{R}^{N-1}\right)$

$$
\begin{aligned}
\mathcal{F}_{n}(\mathbf{u})= & \int_{\Omega}\left(\frac{\left|\mathbf{u}-\mathbf{u}_{n-1}\right|^{2}}{2 h}+\frac{|\nabla \mathbf{u}|^{2}}{2}\right) d x \\
& \text { Heat Type } \\
& +\sum_{k=1}^{N-1} \frac{1}{\tilde{\epsilon}}\left|V_{k}-\operatorname{meas}\left(E_{k}^{n}\right)\right|^{2} \\
& E_{k}^{n}=\left\{x \in \mathbf{R}^{m}: \mathbf{u}(x) \cdot \mathbf{p}_{k}=\max _{i=1, \ldots, N} \mathbf{u}(x) \cdot \mathbf{p}_{i}\right\}
\end{aligned}
$$

Multi-phase volume preserving

Multi-phase volume preserving

Hyperbolic Mean Curvature Flow

$$
\begin{cases}\alpha^{\prime \prime}(t, s)=-\kappa(s) & (t, s) \in(0, T) \times[0,1) \\ \alpha^{\prime}(t=0, s)=v_{0}(s) & s \in[0,1) \\ \alpha(t=0, s)=\gamma(s) & s \in[0,1)\end{cases}
$$

Hyperbolic Mean Curvature Flow

$$
\begin{cases}\alpha^{\prime \prime}(t, s)=-\kappa(s) & (t, s) \in(0, T) \times[0,1) \\ \alpha^{\prime}(t=0, s)=v_{0}(s) & s \in[0,1) \\ \alpha(t=0, s)=\gamma(s) & s \in[0,1)\end{cases}
$$

The geometrical setting

mean curvature flow

$$
v=-\kappa
$$

$\Gamma_{t}:$ a closed curve at time t \boldsymbol{n} : outer normal vector to Γ_{t}
\boldsymbol{T} : tangent vector to Γ_{t} v : normal velocity
κ : mean curvature

Encode the interface as a contour of a level set function $u(t, x)$

$$
\Gamma_{t}=\{x: u(t, x)=0\}
$$

Γ_{t}

The idea (= follow the level set)

$$
c \quad \boldsymbol{c} u=0 \quad \boldsymbol{x}(t)=(x(t), y(t))
$$

$$
u(t, x, y)=0
$$

$$
u(t=0, x, y)=0
$$

Contours of the level set function:

$$
u(t, \boldsymbol{x}(t))=c \quad(c \in \mathbf{R})
$$

Encode the interface in the zero level set: $u(t, \boldsymbol{x}(t))=0$

Follow the path of a particle along the level set

$$
\frac{d}{d t} u(t, \boldsymbol{x}(t))=0 \Longrightarrow u_{t}(t, x(t))+\nabla u(t, x) \cdot \dot{\boldsymbol{x}}(t)=0
$$

The idea (= follow the level set)

$$
\begin{array}{r}
\boldsymbol{x}(t)=(x(t), y(t)) \quad u(t, x, y)=0 \\
u(t=0, x, y)=0
\end{array}
$$

The velocity has a normal and tangental component: $\dot{\boldsymbol{x}}(t)=\left(V_{n} \boldsymbol{n}+V_{\boldsymbol{T}} \boldsymbol{T}\right) \quad u_{t}+\nabla u \cdot\left(V_{\boldsymbol{n}} \boldsymbol{n}+V_{\boldsymbol{T}} \boldsymbol{T}\right)=0$

Rewrite using the normal vector:

$$
u_{t}+|\nabla u| \boldsymbol{n} \cdot\left(V_{\boldsymbol{n}} \boldsymbol{n}+V_{\boldsymbol{T}} \boldsymbol{T}\right)=0
$$

$$
\boldsymbol{n}=\frac{\nabla u}{|\nabla u|}
$$

Using orthogonality relations:

$$
u_{t}=-V_{n}|\nabla u| \quad \text { (the level set equation) }
$$

The idea (= follow the level set)

$$
c^{u=0} \quad \boldsymbol{x}(t)=(x(t), y(t)) \quad u(t, x, y)=0
$$

The interfacial velocity:

$$
\frac{u_{t}}{|\nabla u|}=-V_{n}
$$

$u_{t}=\Delta u \Longrightarrow$ BMO algorithm
The interfacial acceleration:

$$
\frac{\partial}{\partial t}\left[\frac{u_{t}}{|\nabla u|}\right]=-\dot{V}_{n} \quad \Longrightarrow \quad \frac{u_{t t}|\nabla u|-|\nabla u|_{t} u_{t}}{|\nabla u|^{2}}=-\dot{V}_{n}
$$

$\Gamma_{t}=\{x \in \Omega: u(t, x)=0\}$ The signed distance function

$$
d(t, x)=\left\{\begin{aligned}
\inf _{y \in \Gamma_{t}}\|x-y\| & \text { if } x \in\{u(t, x)>0\} \\
-\inf _{y \in \Gamma_{t}}\|x-y\| & \text { otherwise }
\end{aligned}\right.
$$

satisfies the Eikonal equation:

$$
|\nabla d|=1 \quad \text { a.e. } x
$$

Choose the evolution: $u_{t t}=\Delta u$

$$
-\dot{V}_{n}=\frac{u_{t t}|\nabla u|-|\nabla u|_{t} u_{t}}{|\nabla u|^{2}}=\frac{\Delta u|\nabla u|-|\nabla u|_{t} u_{t}}{|\nabla u|^{2}}=\frac{(\nabla \cdot \nabla u)|\nabla u|-|\nabla u|_{t} u_{t}}{|\nabla u|^{2}}
$$

$$
=\frac{(\nabla \cdot(|\nabla u| \boldsymbol{n}))|\nabla u|-|\nabla u|_{t} u_{t}}{|\nabla u|^{2}} \Longrightarrow-\dot{V}_{\boldsymbol{n}}=\nabla \cdot \boldsymbol{n}=\kappa
$$

The hyperbolic BMO algorithm

Γ_{0} Jordan curve
2-Phase
Signed distance function to Γ_{0}

Ω

Evolve the curve by $\quad v^{\prime}=-\kappa \quad 0<\Delta t \ll 1$ for $k=0, \ldots, M A X$ do

完

$$
\left\{\begin{array}{lr}
u_{t t}=\Delta u & \text { in }(0, \Delta t) \times \Omega \\
\frac{\partial u}{\partial \nu}=0 & \text { on }(0, \Delta t) \times \partial \Omega \\
u(t=0, x)=2 d_{k}-d_{k-1} & \text { in } \Omega \\
u_{t}(t=0, x)=0 & \text { in } \Omega
\end{array}\right.
$$

Solve the wave equation for a small time Δt

$$
\Gamma_{k+1}=\partial\{u(t=\Delta t, x)>0\}
$$

Evolve the curve

$$
d_{k+1}(x)=\left\{\begin{aligned}
\inf _{y \in \Gamma_{k+1}}\|x-y\| & \text { if } x \in\{u(t=\Delta t, x)>0\} \\
-\inf _{y \in \Gamma_{k+1}}\|x-y\| & \text { otherwise } \quad \text { Truncation }
\end{aligned}\right.
$$

Theorem: Let $2 d_{k}-d_{k-1}$ evolve by the wave equation (\star), for a time $t>0$. Then the zero level set of the solution evolves with normal acceleration: $v^{\prime}=-\kappa+O(t)$ (and velocity $v(t)=v(0)-t \kappa+O\left(t^{2}\right)$).

$$
\left\{\begin{array}{lr}
u_{t t}=\Delta u & \text { in }(0, \Delta t) \times \Omega \\
\frac{\partial u}{\partial \nu}=0 & \text { on }(0, \Delta t) \times \partial \Omega \\
u(t=0, x)=2 d_{k}-d_{k-1} & \text { in } \Omega \\
u_{t}(t=0, x)=0 & \text { in } \Omega
\end{array}\right.
$$

Proof: (sketch, 2D) $x=\left(x_{1}, x_{2}\right)$
The solution to the wave equation with initial condition u_{0} and initial velocity v_{0} can be written:

$$
u(x, t)=\frac{1}{2 \pi t} \int_{B(x, t)} \frac{u_{0}(y)+t v_{0}(y)+\nabla u_{0}(y) \cdot(y-x)}{\sqrt{t^{2}-|y-x|^{2}}} d y .
$$

Consider an initial condition that is the sum of two signed distance functions:

$$
u_{0}=a d_{0}+b d_{-1}, v_{0}=0(a, b, \in \mathbf{R})
$$

A Hyperbolic BMO Algorithm: the justification

Theorem: (LeFloch et al., J. Math. Pures Appl., 2008, 90)
If the velocity field is normal to the hypersurface at time zero, then it is normal throughout the evolution.
Lemma: (Essedoglu et al., J. Comp. Phys., 2010, 229)
Let $f(x)$ be a smooth function whose graph $(x, f(x))$ describes the interface in a neighborhood of the origin. Then signed distance function $d(x, f(x))$ has the following Taylor expansion at $x=0$:

Distance functions

Def. Given $A \subset \mathbf{R}^{N}$, the distance function from a point x to A is defined as:

$$
d_{A}(x)=\inf _{y \in A}|y-x| .
$$

Remark. Suppose $\partial \Omega$ is the boundary of a set Ω. Then

$$
x \in \partial \Omega \Longrightarrow d_{\partial \Omega}(x)=0
$$

Thm. The map $x \rightarrow d_{A}(x)$ is uniformly Lipschitz continuous in \mathbf{R}^{N} :

$$
\forall x, y \in \mathbf{R}^{N}, \quad\left|d_{A}(y)-d_{A}(x)\right| \leq|y-x|
$$

proof. For all $z \in A$ and $x, y \in \mathbf{R}^{N}$

$$
\begin{aligned}
|z-y| & \leq|z-x|+|y-x| \\
d_{A}(y)=\inf _{z \in A}|z-y| & \leq \inf _{z \in A}|z-x|+|y-x|=d_{A}(x)+|y-x| .
\end{aligned}
$$

Distance functions

Thm. The distance function satisfies the Eikonal equation:

$$
\left|\nabla d_{\partial \Omega}(x)\right|=1 \quad \text { a.e. in } \mathbf{R}^{N} .
$$

proof.

1. For a given location x, let x_{c} denote the point on $\partial \Omega$ that is closest to x.
2. Consider the line segment connecting x to x_{c}.
3. Note that x_{c} is the closest point on $\partial \Omega$ to every point along this segment.
4. $-\nabla d_{\partial \Omega}(x)$ gives the direction of steepest descent. \square

Distance functions

Since distance functions have "kinks" on their zero level set, signed distance functions are often used when we need to compute derivatives on $\partial \Omega$.

$$
\operatorname{signd}_{\partial \Omega}(x)=\left\{\begin{aligned}
d(x, \partial \Omega) & x \in \Omega \\
-d(x, \partial \Omega) & x \in \mathbf{R}^{N} \backslash \Omega
\end{aligned}\right.
$$

$d_{\partial \Omega}(x)$

$\operatorname{signd}_{\partial \Omega}(x)$

Thm. The signed distance function $d(x, f(x))$ has the following Taylor expansion at $x=0$:

$$
\begin{aligned}
d(x, y)=y & +\frac{1}{2} \kappa(0) x^{2}+\frac{1}{6} \kappa_{x}(0) x^{3}-\frac{1}{2} \kappa^{2}(0) x^{2} y+\frac{1}{24}\left(\kappa_{x x}(0)-3 \kappa^{3}(0)\right) x^{4} \\
& -\frac{1}{2} \kappa(0) \kappa_{x}(0) x^{3} y+\frac{1}{2} \kappa^{3}(0) x^{2} y^{2}+O\left(|\boldsymbol{x}|^{5}\right)
\end{aligned}
$$

proof. (Essedoglu et al.)
This follows directly from the following four lemmas.

A Taylor expansion for the signed distance function

Lemma 1. For sufficiently small y, we have

$$
d(0, y)=y
$$

$$
d_{y}(0, y)=1 \quad \frac{\partial^{k}}{\partial y^{k}} d(0, y)=0 \quad(\text { for } k=2,3,4, \ldots) \quad \text { and } \quad d_{x}(0, y)=0
$$

proof.

From the previous discussion, we already have $d(0, y)=y$. The partial derivatives with respect to y yield the first two expressions, and the last expression then follows from the eikonal equation.

A Taylor expansion for the signed distance function

Lemma 2. The following hold:

$$
\frac{\partial^{k}}{\partial y^{k}} d_{x}(0, y)=0 \quad(k=1,2, \ldots)
$$

for all sufficiently small (x, y).
proof.
Let $A(x, y)=d_{x}^{2}(x, y)+d_{y}^{2}(x, y)$. The eikonal equation implies $A(x, y)=1$.
Differentiating with respect to x and y :

$$
\begin{align*}
& \frac{1}{2} \frac{\partial}{\partial x} A(x, y)=d_{x}(x, y) d_{x x}(x, y)+d_{y}(x, y) d_{x y}(x, y)=0 \tag{*}\\
& \frac{1}{2} \frac{\partial}{\partial y} A(x, y)=d_{x}(x, y) d_{x y}(x, y)+d_{y}(x, y) d_{y y}(x, y)=0 .
\end{align*}
$$

Evaluating at $x=0$ and using the result of lemma 1, one has

$$
\left.d_{x y}(0, y)=0 \text { (for all small enough } y .\right)
$$

Differentiation with respect to y yields the claim.

A Taylor expansion for the signed distance function

Lemma 3. The following hold:

$$
\begin{aligned}
d_{x x}(0,0) & =\kappa(0), \\
d_{x x y}(0,0) & =-\kappa^{2}(0) \\
d_{x x x}(0,0) & =\kappa_{x}(0)
\end{aligned}
$$

proof.

Along the interface, $d_{x x}(x, f(x))+d_{y y}(x, f(x))=\kappa(x)$. Evaluating at $x=0$ and using lemma 1 yields the first claim. To obtain the second claim, we differentiate (\star) with respect to x again:

$$
\frac{1}{2} A_{x x}(x, y)=d_{x x}^{2}+d_{x} d_{x x x}+d_{x y}^{2}+d_{y} d_{x x y}=0 .
$$

Evaluating at $(x, y)=(0,0)$ gives $d_{x x y}(0,0)=-\kappa^{2}(0)$ (where we have used the previous results).

A Taylor expansion for the signed distance function

To obtain the last claim, we differentiate the expression for the Laplacian of the distance function with respect to x :

$$
\begin{gathered}
\frac{\partial}{\partial x}\left(d_{x x}(x, f(x))+d_{y y}(x, f(x))\right)=\kappa_{x}(x) \\
d_{x x x}(x, f(x))+d_{x x y}(x, f(x)) f^{\prime}(x)+d_{y y x}(x, f(x))+d_{y y y}(x, f(x)) f^{\prime}(x) \\
\left(f(0)=0, f^{\prime}(0)=0, f^{\prime \prime}(0)=-\kappa(0)\right) \\
\Longrightarrow \\
d_{x x x}(0,0)+d_{x x y}(0,0) f^{\prime}(0)+d_{y y x}(0,0)+d_{y y y}(0,0) f^{\prime}(0)=-\kappa_{x}(0)
\end{gathered}
$$

A Taylor expansion for the signed distance function

Lemma 4. The following hold:

$$
\begin{aligned}
d_{x x x y}(0,0) & =-3 \kappa(0) \kappa_{x}(0) \\
d_{x x y y}(0,0) & =2 \kappa^{3}(0) \\
d_{x x x x}(0,0) & =\kappa_{x} x(0)-3 \kappa(0)^{3} .
\end{aligned}
$$

proof.
Differentiating with respect to x :

$$
\begin{aligned}
\frac{1}{2} A_{x x x}(x, y) & =\frac{\partial}{\partial x}\left(d_{x x}^{2}+d_{x} d_{x x x}+d_{x y}^{2}+d_{y} d_{x x y}\right)=0 \\
& =3 d_{x x} d_{x x x}+3 d_{x y} d_{x x y}+d_{x} d_{x x x x}+d_{y} d_{x x y x}
\end{aligned}
$$

Evaluated at $(x, y)=(0,0)$ yields

$$
3 \kappa(0) \kappa_{x}(0)+0+0+d_{x x y x}(0,0)=0
$$

A Taylor expansion for the signed distance function

Differentiating with respect to y :

$$
\begin{aligned}
& \frac{1}{2} A_{x x y}(x, y)=\frac{\partial}{\partial y}\left(d_{x x}^{2}+d_{x} d_{x x x}+d_{x y}^{2}+d_{y} d_{x x y}\right)=0 \\
& =2 d_{x x} d_{x x y}+d_{x y} d_{x x x}+d_{x} d_{x x x y}+2 d_{x y} d_{x y y}+d_{y y} d_{x x y}+d_{y} d_{x x y y}
\end{aligned}
$$

Evaluating at $(x, y)=(0,0)$:

$$
\begin{gathered}
0=-2 \kappa(0) \kappa^{2}(0)+0+0+0+0+d_{x x y y}(0,0) \\
2 \kappa^{3}(0)=d_{x x y y}(0,0)
\end{gathered}
$$

A Taylor expansion for the signed distance function

Differentiating a previous result with respect to x again, we obtain:

$$
\begin{aligned}
& \quad \frac{\partial}{\partial x}\left(d_{x x x}(0,0)+d_{x x y}(0,0) f^{\prime}(0)+d_{y y x}(0,0)+d_{y y y}(0,0) f^{\prime}(0)\right)=-\kappa_{x x}(0) \\
& \Longrightarrow \\
& \begin{array}{l}
d_{x x x x}(x, f(x))+d_{x x x y}(x, f(x)) f^{\prime}(x)+\left(d_{x x x y}(x, f(x))+d_{x x y y}(x, f(x)) f^{\prime}(x)\right) f^{\prime}(x)+f^{\prime \prime}(x) d_{x x y}(x, f(x)) \\
+d_{y y x x}(x, f(x))+d_{y y y x}(x, f(x)) f^{\prime}(x)+\left(d_{y y y x}\left(x, f(x)+d_{y y y y}(x, f(x)) f^{\prime}(x)\right) f^{\prime}(x)+f^{\prime \prime}(x) d_{y y y}(x, f(x))\right. \\
=
\end{array} \begin{aligned}
\kappa_{x x}(x)
\end{aligned}
\end{aligned}
$$

Evaluated at $x=0$, one obtains:

$$
d_{x x x x}(0,0)+0+0+\kappa^{3}(0)+2 \kappa^{3}(0)+0+0+0=\kappa_{x x}(0)
$$

$$
d_{x x x x}(0,0)=\kappa_{x x}(0)-3 \kappa^{3}(0)
$$

The hyperbolic BMO algorithm

Γ_{0} Jordan curve
2-Phase
Signed distance function to Γ_{0}

Evolve the curve by $\quad v^{\prime}=-\kappa \quad 0<\Delta t \ll 1$ for $k=0, \ldots, M A X$ do

$$
\left\{\begin{array}{lr}
u_{t t}=\Delta u r & \text { in }(0, \Delta t) \times \Omega \\
\frac{\partial u}{\partial \nu}=0 & \text { on }(0, \Delta t) \times \partial \Omega \\
u(t=0, x)=2 d_{k}-d_{k-1} & \text { in } \Omega \\
u_{t}(t=0, x)=0 & \text { in } \Omega
\end{array}\right.
$$

Solve the wave equation for a small time Δt

$$
\Gamma_{k+1}=\partial\{u(t=\Delta t, x)>0\}
$$

Evolve the curve
end

$$
d_{k+1}(x)=\left\{\begin{array}{c}
\inf _{y \in \Gamma_{k+1}}\|x-y\| \text { if } x \in\{u(t=\Delta t, x)>0\} \\
-\inf _{y \in \Gamma_{k+1}}\|x-y\| \text { otherwise } \quad \text { Truncation }
\end{array}\right.
$$

$$
v^{\prime}=-\kappa
$$

Multiphase motions

$$
d_{n}^{j}(x)
$$

$$
d_{n}^{i}(x)
$$

Properties of wave propagation gives a multiphase algorithm
$N: \quad$ Number of phases
denote $d_{i}^{k}(x)=\left\{\begin{array}{cc}\left.\text { distt } x, \partial E_{i}^{k}\right) & x \in E_{i}^{k} \\ - \text { dist }\left(x, \partial E_{i}^{k}\right) & x \in \Omega \backslash E_{i}^{k} .\end{array}\right.$
$\Gamma_{k}^{i}=\partial E_{i}:$ interface i at time $k \Delta t$
for $k=1, \ldots, M A X$ do
for each $i=1, \ldots, N$ evolve Γ_{k}^{i} by BMO

E_{5}		E_{2}
	E_{4}	E_{1}
		$E_{3} \Omega$
E_{6}		$E_{3} \Omega$

$0<\Delta t \ll 1$

Solve the wave equation for a small time Δt

Truncation

Evolve the curve

The reformulated multiphase hyperbolic BMO algorithm for $k=1, \ldots, M A X$ do
i. Construct the initial vector field, z_{k-1}^{ϵ}
ii. Solve

$$
\left\{\begin{array}{lr}
\boldsymbol{u}_{t t}=\Delta \boldsymbol{u} & \text { in }(0, \Delta t) \times \Omega \\
\frac{\partial u}{\partial u}=0 & \text { on }(0, \Delta t) \times \partial \Omega \\
\boldsymbol{u}(t=0, x)=2 \boldsymbol{z}_{k-1}^{\epsilon}-\boldsymbol{z}_{k-2}^{\epsilon} & \text { in } \Omega \\
\boldsymbol{u}_{t}(t=0, x)=0 & \text { in } \Omega
\end{array}\right.
$$

iii. Evolve the interface:

$$
\begin{aligned}
E_{i}^{k} & =\left\{x \in \Omega: \boldsymbol{u}(\Delta t, x) \cdot \boldsymbol{p}_{i}=\max _{j=1, \ldots, N} \boldsymbol{u}(\Delta t, x) \cdot \boldsymbol{p}_{j}\right\}, i=1, \ldots, N \\
\Gamma_{i}^{k} & =\partial E_{i}^{k}, i=1, \ldots, N
\end{aligned}
$$

end

$$
z_{k}^{\epsilon}(x)=\sum_{i=1}^{N}\left(p^{i} \chi_{\left\{d_{i}^{d}(x) \geq \frac{\varepsilon}{2}\right\}}+\frac{1}{\epsilon}\left(\frac{\epsilon}{2}+d_{i}^{k}(x)\right) p^{i} \chi_{\left\{\frac{-2}{2}<d_{i}^{d}(x)<\frac{⿺}{2}\right\}}\right) \quad \epsilon>0
$$

$$
\boldsymbol{p}_{k} \in \mathbf{R}^{N-1}:
$$

coordinates are given by the vertices of a regular simplex in \mathbf{R}^{N}.

Numerical behavior of our approximation method

Numerical behavior of our approximation method

Uniform Energy Estimates on the Minimizing Movement

Vector-type minimizing movement: $\boldsymbol{u}, \boldsymbol{u}_{n-1}, \boldsymbol{u}_{n-2} \in H^{1}\left(\Omega ; \mathbf{R}^{N-1}\right)$

$$
\begin{array}{cc}
\mathcal{F}_{n}(\boldsymbol{u})=\int_{\Omega}\left(\frac{\left|\boldsymbol{u}-2 \boldsymbol{u}_{n-1}+\boldsymbol{u}_{n-2}\right|^{2}}{2 h^{2}}+\frac{|\nabla \boldsymbol{u}|^{2}}{2}\right) d x & \text { Wave Type } \\
+\sum_{k=1}^{N-1} \frac{1}{\tilde{\epsilon}}\left|V_{k}-\operatorname{meas}\left(E_{k}^{n}\right)\right|^{2} & \text { Penalties }
\end{array}
$$

If there is no penalty, the minimizing movement converges:

$$
\begin{aligned}
& u_{t}^{h} \stackrel{*}{\rightharpoonup} u_{t}, \quad \nabla \bar{u}^{h} \stackrel{*}{\rightharpoonup} \nabla u, \quad \nabla u^{h} \stackrel{*}{\rightharpoonup} \nabla u \quad\left(\text { weakly star in } L^{\infty}\left(0, T ; L^{2}(\Omega)\right)\right) \\
& \begin{array}{l}
\left.\bar{u}^{h} \rightarrow u, \quad u^{h} \rightarrow u \quad \text { (strongly in } L^{2}\left(Q_{T}\right)\right) . \\
\frac{u_{t}^{h}(t)-u_{t}^{h}(t-h)}{h} \stackrel{*}{\sim} u_{t t}, \quad\left(\text { weakly star in } L^{\infty}\left(0, T ; L^{2}(\Omega)\right)\right)
\end{array}
\end{aligned}
$$

$$
v=-\kappa+\bar{k}
$$

$$
v^{\prime}=-\kappa+\bar{v}
$$

$$
v=-\kappa+\bar{k}
$$

$$
v^{\prime}=-\kappa+\bar{v}
$$

Properties of the approximation scheme

Contact Angles

Hydrophobic

Hydrophilic

Error Analysis

Summary

We introduced a method for approximating motion by hyperbolic mean curvature flow (HMCF)

The method is a threshold-dynamical algorithm, of the BMO type

The level set formulation suggested that thresholding evolution by the wave equation should yield the desired dynamics

Using the explicit representation formulas of the wave equation, we showed that the thresholding process yields motion by hyperbolic mean curvature flow, with an error of order t.

Numerical investigations suggest that volume preservation should be possible as well

References

1. S. Esedoglu, S. Ruuth, R. Tsai. Diffusion generated motion using signed distance functions. J. Comp. Phys. Vol. 229, No. 4 (2010), pp. 1017-1042.
2. P. G. LeFloch, K. Smoczyk. The hyperbolic mean curvature flow, Journal de Mathématiques Pures et Appliquées, Vol. 90, No. 6 (2008), pp. 591-614.

Thank you for your attention

