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Outline

1. Curvature dependent motions

? v = � (Mean curvature flow)

? dv
dt = � (Hyperbolic MCF)

(see J. Math. Pures Appl., P. LeFloch and K. Smoczyk 2008)

2. An approximation method for HMCF

? The original BMO (mean curvature flow)

? The hyperbolic BMO

+ Justification of our thresholding algorithm.

3. Application of the numerical method.

? Hyperbolic mean curvature flow (HMCF)

? Multiphase HMCF

? Volume preserving HMCF, contact angles, numerical tests
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Interfacial dynamics

dv

dt
= �v = �

What does curvature-driven acceleration look like?

Mean Curvature Flow Hyperbolic Mean Curvature Flow
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dv

dt
= �

0 L

Wave equation

0 L

u
tt

= u
xx

Hyperbolic mean curvature flow

0 L

Nonlinear wave equation

utt = div

0

@ ruq
1 + |ru|2

1

A

Physical interpretation (membrane motion)
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Computational Tools

Topological changes

Front tracking
・explicitly evolve nodes

・simple to implement

・development of singularities

   causes difficulty

Multiphase Vol. Pres. Merging
Threshold dynamical algorithms

dv

dt
= �
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Computational Tools

Topological changes

Front tracking
・explicitly evolve nodes

・simple to implement

・development of singularities

   causes difficulty

Multiphase Vol. Pres. Merging
Threshold dynamical algorithms

dv

dt
= �
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0

0.5

1

xy

�E

Initial condition

The scalar BMO algorithm (1992) (Bence-Merriman-Osher)

u0 = �{u(t=�t,x)>1/2} �k = �{u(t = ⇥t, x) > 1/2}

Evolve by mean curvature flow v = �

�0

⌦

E

0 < �t ⌧ 1

Heat operator Truncate

8
><

>:

ut = �u in (0,�t)⇥ ⌦

@u
@⌫ = 0 on (0,�t)⇥ @⌦

u(t = 0, x) = �E in ⌦
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for k = 1, ...,MAX do

Solve the heat
equation for a
small time �t

end
�i
k = �Ei, i = 1, ..., N

8
><

>:

ut = �u in (0,�t)⇥ ⇥
⇥u
⇥� = 0 on (0,�t)⇥ �⇥

u(t = 0, x) = u0 in ⇥

Ei = {x � ⇥ : u(�t, x) · pi = max
j=1,...,N

u(�t, x) · pj}, i = 1, ..., N

set u0(x) = pi for x 2 Ei i = 1, ..., N

3-phase 4-phase2-phase

Reformulated multiphase (vector-type) BMO algorithm:

pk 2 RN�1 :

Initialize

coordinates are given

by the vertices of a

regular simplex in RN .

0 < �t ⌧ 1

Truncation

Evolve the curve

V
-B

M
O
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Curvature Dependent Motions

v = �

mean curvature flow
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Volume constrained motions

9

PDE

ut = �u+
N�1X

i=1

�ipiHm�1��Ei

Interfacial motion

vi = ��i + ⇥̃i

Fn(u) =

Z

�

✓
|u� un�1|2

2h
+

|⇥u|2

2

◆
dx

Vector-type minimizing movement:

Heat Type

Penalties

E1

E2

E3

E4

⌦

E5

E6

u,un�1 2 H1(�;RN�1)

+
N�1X

k=1

1

�̃
|Vk �meas(En

k )|
2

E

n
k = {x � Rm

: u(x) · pk = max

i=1,...,N
u(x) · pi}

�̃ > 0
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Multi-phase volume preserving

10
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Multi-phase volume preserving

10
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Hyperbolic Mean Curvature Flow
8
><

>:

↵00(t, s) = �(s) (t, s) 2 (0, T )⇥ [0, 1)

↵0(t = 0, s) = v0(s) s 2 [0, 1)

↵(t = 0, s) = �(s) s 2 [0, 1)
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Hyperbolic Mean Curvature Flow
8
><

>:

↵00(t, s) = �(s) (t, s) 2 (0, T )⇥ [0, 1)

↵0(t = 0, s) = v0(s) s 2 [0, 1)

↵(t = 0, s) = �(s) s 2 [0, 1)
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n

T

n : outer normal vector to �t

T : tangent vector to �t

v = �

v : normal velocity

 : mean curvature

�t : a closed curve at time tmean curvature flow

The geometrical setting

�t

Encode the interface as a contour 
of a level set function 

ex: signed distance

�t

u(t, x)

�t = {x : u(t, x) = 0}

u(t, x)
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Encode the interface in the zero level set:

13

u(t,x(t)) = c

u(t,x(t)) = 0

The idea (= follow the level set)

(c 2 R)

c
u = 0

x(t) = (x(t), y(t))

u(t = 0, x, y) = 0

u(t, x, y) = 0

Contours of the level set function:

Follow the path of a particle along the level set
d

dt
u(t,x(t)) = 0 =) ut(t, x(t)) +ru(t, x) · ẋ(t) = 0
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Using orthogonality relations:

14

ut = �Vn |ru|

c
u = 0

x(t) = (x(t), y(t))

u(t = 0, x, y) = 0

u(t, x, y) = 0

The idea (= follow the level set)

The velocity has a normal and tangental component:
ẋ(t) = (Vnn+ VTT )

Rewrite using the normal vector: n =
ru

|ru|

(the level set equation)

ut +ru · (Vnn+ VTT ) = 0

ut + |ru|n · (Vnn+ VTT ) = 0
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The interfacial velocity:

15

ut

|ru| = �Vn

c
u = 0

x(t) = (x(t), y(t))

u(t = 0, x, y) = 0

u(t, x, y) = 0

The idea (= follow the level set)

The interfacial acceleration:

ut = �u =) BMO algorithm

@

@t


ut

|ru|

�
= �V̇n =)

utt |ru|� |ru|t ut

|ru|2
= �V̇n
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�t = {x 2 ⌦ : u(t, x) = 0}

d(t, x) =

(
infy2�t ||x� y|| if x 2 {u(t, x) > 0}

� infy2�t ||x� y|| otherwise

Choose the evolution: utt = �u

�V̇n =
utt |ru|� |ru|t ut

|ru|2
=

�u |ru|� |ru|t ut

|ru|2
=

(r ·ru) |ru|� |ru|t ut

|ru|2

=)

The signed distance function 

�V̇n = r · n = 

satisfies the Eikonal equation:

=
(r · (|ru|n)) |ru|� |ru|t ut

|ru|2

|rd| = 1 a.e. x
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The hyperbolic BMO algorithm

0 < �t ⌧ 1

end

Evolve the curve

Truncation

Evolve the curve by v0 = �

�0 Jordan curve

Signed distance function to �0

Solve the wave

equation for a

small time �t

8
>>><

>>>:

utt = �u in (0,�t)⇥ ⌦

@u
@⌫ = 0 on (0,�t)⇥ @⌦

u(t = 0, x) = 2dk � dk�1 in ⌦

ut(t = 0, x) = 0 in ⌦

H
B

M
O

for k = 0, ...,MAX do

�k+1 = @{u(t = �t, x) > 0}

dk+1(x) =

(
infy2�k+1 ||x� y|| if x 2 {u(t = �t, x) > 0}

� infy2�k+1 ||x� y|| otherwise
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u0 = ad0 + bd�1, v0 = 0 (a, b,2 R)

Consider an initial condition that is the sum of two signed distance functions:

Proof: (sketch, 2D)

(?)

8
>>><

>>>:

utt = �u in (0,�t)⇥ ⌦

@u
@⌫ = 0 on (0,�t)⇥ @⌦

u(t = 0, x) = 2dk � dk�1 in ⌦

ut(t = 0, x) = 0 in ⌦

Theorem: Let 2dk � dk�1 evolve by the wave equation (?), for a time t > 0.

Then the zero level set of the solution evolves with normal acceleration:

v0 = �+O(t) (and velocity v(t) = v(0)� t+O(t2)).

The solution to the wave equation with initial condition u0 and initial velocity

v0 can be written:

u(x, t) =

1

2⇡t

Z

B(x,t)

u0(y) + tv0(y) +ru0(y) · (y � x)p
t

2 � |y � x|2
dy.

x = (x1, x2)
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↵n

↵n�1

�n�1

�n

dn(y) = y2 +
1

2
ny

2
1 +O(|y|3)

y1

y2

A Hyperbolic BMO Algorithm: the justification

�1

2
(0)

x

(0)x3y +
1

2
3(0)x2y2 +O(|x|5)

d(x, y) = y +
1

2
(0)x2 +

1

6


x

(0)x3 � 1

2


2(0)x2
y +

1

24
(

xx

(0)� 33(0))x4(2-d):

Lemma: (Essedoglu et al., J. Comp. Phys., 2010, 229)

Let f(x) be a smooth function whose graph (x, f(x)) describes the interface in

a neighborhood of the origin. Then signed distance function d(x, f(x)) has the

following Taylor expansion at x = 0:

Theorem: (LeFloch et al., J. Math. Pures Appl., 2008, 90)

If the velocity field is normal to the hypersurface at time zero, then it is normal

throughout the evolution.

dn�1(y) = y2 + ↵n�1 +
1

2
n�1y

2
1 +O(|y|3)
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Distance functions
Def. Given A ⇢ RN

, the distance function from a point x to A is defined as:

dA(x) = inf

y2A
|y � x|.

Thm. The map x ! dA(x) is uniformly Lipschitz continuous in RN
:

8x, y 2 RN
, |dA(y)� dA(x)|  |y � x|.

proof. For all z 2 A and x, y 2 R

N

|z � y|  |z � x|+ |y � x|
dA(y) = inf

z2A
|z � y|  inf

z2A
|z � x|+ |y � x| = dA(x) + |y � x|.

x 2 @⌦ =) d@⌦(x) = 0

Remark. Suppose @⌦ is the boundary of a set ⌦. Then
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1. For a given location x, let xc denote the point on @⌦ that is closest to x.

proof.

2. Consider the line segment connecting x to xc.

3. Note that xc is the closest point on @⌦ to every point along this segment.

4. �rd@⌦(x) gives the direction of steepest descent. ⌅

Thm. The distance function satisfies the Eikonal equation:

|rd@⌦(x)| = 1 a.e. in RN
.

Distance functions

Wednesday, December 3, 14
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Since distance functions have “kinks” on their zero level set, signed distance

functions are often used when we need to compute derivatives on @⌦.

x

⇤ 2 @⌦

signd@⌦(x) =

(
d(x, @⌦) x 2 ⌦,

�d(x, @⌦) x 2 RN\⌦.

x

⇤ 2 @⌦

d@⌦(x)
signd@⌦(x)

Distance functions

Wednesday, December 3, 14
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0

n

{u > 0}

{u < 0}

Thm. The signed distance function d(x, f(x)) has the following Taylor expan-

sion at x = 0:

d(x, y) = y +
1

2
(0)x2 +

1

6

x

(0)x3 � 1

2
2(0)x2y +

1

24
(

xx

(0)� 33(0))x4

� 1

2
(0)

x

(0)x3y +
1

2
3(0)x2y2 +O(|x|5)

proof.

This follows directly from the following four lemmas.

x

y

u(t = 0, x, y) = 0

(Essedoglu et al.)
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24

A Taylor expansion for the signed distance function
Lemma 1. For su�ciently small y, we have

d(0, y) = y.

=)

dy(0, y) = 1
@k

@yk
d(0, y) = 0 (for k = 2, 3, 4, ...) d

x

(0, y) = 0

From the previous discussion, we already have d(0, y) = y. The partial deriva-

tives with respect to y yield the first two expressions, and the last expression

then follows from the eikonal equation.

proof.

⌅

and
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Lemma 2. The following hold:

@

k

@y

k

d

x

(0, y) = 0 (k = 1, 2, ...)

for all su�ciently small (x, y).

proof.

Let A(x, y) = d

2
x

(x, y) + d

2
y

(x, y). The eikonal equation implies A(x, y) = 1.

Di↵erentiating with respect to x and y:

1

2

@

@x

A(x, y) = d

x

(x, y)d
xx

(x, y) + d

y

(x, y)d
xy

(x, y) = 0

1

2

@

@y

A(x, y) = d

x

(x, y)d
xy

(x, y) + d

y

(x, y)d
yy

(x, y) = 0.

Evaluating at x = 0 and using the result of lemma 1, one has

d

xy

(0, y) = 0 (for all small enough y.)

Di↵erentiation with respect to y yields the claim.

(?)

⌅

A Taylor expansion for the signed distance function
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Lemma 3. The following hold:

d
xx

(0, 0) = (0),

d
xxy

(0, 0) = �2
(0)

d
xxx

(0, 0) = 
x

(0).

Along the interface, d

xx

(x, f(x))+d

yy

(x, f(x)) = (x). Evaluating at x = 0 and

using lemma 1 yields the first claim. To obtain the second claim, we di↵erentiate

(?) with respect to x again:

1

2

A

xx

(x, y) = d

2
xx

+ d

x

d

xxx

+ d

2
xy

+ d

y

d

xxy

= 0.

Evaluating at (x, y) = (0, 0) gives d

xxy

(0, 0) = �

2
(0) (where we have used the

previous results).

proof.

A Taylor expansion for the signed distance function
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d

xxx

(x, f(x)) + d

xxy

(x, f(x))f 0(x) + d

yyx

(x, f(x)) + d

yyy

(x, f(x))f 0(x)

(f(0) = 0, f 0(0) = 0, f 00(0) = �(0))

d
xxx

(0, 0) + d
xxy

(0, 0)f 0(0) + d
yyx

(0, 0) + d
yyy

(0, 0)f 0(0) = �
x

(0)

=)

⌅

A Taylor expansion for the signed distance function
To obtain the last claim, we di↵erentiate the expression for the Laplacian of the

distance function with respect to x:

@

@x

(d

xx

(x, f(x)) + d

yy

(x, f(x))) = 

x

(x)

=
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Lemma 4. The following hold:

d

xxxy

(0, 0) = �3(0)

x

(0),

d

xxyy

(0, 0) = 2

3
(0),

d

xxxx

(0, 0) = 

x

x(0)� 3(0)

3
.

proof .

1

2
A

xxx

(x, y) =
@

@x

�
d

2
xx

+ d

x

d

xxx

+ d

2
xy

+ d

y

d

xxy

�
= 0

= 3d
xx

d
xxx

+ 3d
xy

d
xxy

+ d
x

d
xxxx

+ d
y

d
xxyx

Evaluated at (x, y) = (0, 0) yields

3(0)
x

(0) + 0 + 0 + d

xxyx

(0, 0) = 0.

Di↵erentiating with respect to x:

A Taylor expansion for the signed distance function
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1

2
A

xxy

(x, y) =
@

@y

�
d

2
xx

+ d

x

d

xxx

+ d

2
xy

+ d

y

d

xxy

�
= 0

= 2d
xx

d
xxy

+ d
xy

d
xxx

+ d
x

d
xxxy

+ 2d
xy

d
xyy

+ d
yy

d
xxy

+ d
y

d
xxyy

Evaluating at (x, y) = (0, 0):

0 = �2(0)2(0) + 0 + 0 + 0 + 0 + d

xxyy

(0, 0).

=) 23(0) = d
xxyy

(0, 0).

Di↵erentiating with respect to y:

A Taylor expansion for the signed distance function

Wednesday, December 3, 14



30

Di↵erentiating a previous result with respect to x again, we obtain:

@

@x

(d

xxx

(0, 0) + d

xxy

(0, 0)f

0
(0) + d

yyx

(0, 0) + d

yyy

(0, 0)f

0
(0)) = �

xx

(0)

=)
d

xxxx

(x, f(x)) + d

xxxy

(x, f(x))f 0(x) + (d
xxxy

(x, f(x)) + d

xxyy

(x, f(x))f 0(x)) f 0(x) + f

00(x)d
xxy

(x, f(x))

+ d

yyxx

(x, f(x)) + d

yyyx

(x, f(x))f 0(x) + (d
yyyx

(x, f(x) + d

yyyy

(x, f(x))f 0(x)) f 0(x) + f

00(x)d
yyy

(x, f(x))

= 

xx

(x)

d
xxxx

(0, 0) = 
xx

(0)� 33(0)

=)

Evaluated at x = 0, one obtains:

d

xxxx

(0, 0) + 0 + 0 + 

3
(0) + 2

3
(0) + 0 + 0 + 0 = 

xx

(0).

⌅

A Taylor expansion for the signed distance function
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The hyperbolic BMO algorithm

0 < �t ⌧ 1

end

Evolve the curve

Truncation

Evolve the curve by v0 = �

�0 Jordan curve

Signed distance function to �0

Solve the wave

equation for a

small time �t

8
>>><

>>>:

utt = �u in (0,�t)⇥ ⌦

@u
@⌫ = 0 on (0,�t)⇥ @⌦

u(t = 0, x) = 2dk � dk�1 in ⌦

ut(t = 0, x) = 0 in ⌦

H
B

M
O

for k = 0, ...,MAX do

�k+1 = @{u(t = �t, x) > 0}

dk+1(x) =

(
infy2�k+1 ||x� y|| if x 2 {u(t = �t, x) > 0}

� infy2�k+1 ||x� y|| otherwise
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v = � v0 = �
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B(x, t)

Ei

Ej

@Ej

@Ei

d

i
n(x)

d

j
n(x)

Multiphase motions
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Properties of wave propagation gives a multiphase algorithm

for k = 1, ...,MAX do

end

3

for each                evolve      by BMO

end

i = 1, ..., N �i
k

�i
k = �Ei : interface i at time k�t

N :
Number of phases

H
B

M
O

=

(
dist(x, @Ek

i ) x 2 E

k
i ,

�dist(x, @Ek
i ) x 2 ⌦\Ek

i .
denote d

k
i (x)

8
>>><

>>>:

u

i
tt = �u

i
in (0,�t)⇥ ⌦

@ui

@⌫ = 0 on (0,�t)⇥ @⌦

u

i
(t = 0, x) = 2d

i
k � d

i
k�1 in ⌦

u

i
t(t = 0, x) = 0 in ⌦

0 < �t ⌧ 1

Solve the wave

equation for a

small time �t

Truncation

Evolve the curve�k
i = @Ek

i , i = 1, ..., N

E

k
i = {x : ui(�t, x) > u

j(�t, x), 8j = 1, ..., N}

E1

E2

E3

E4

⌦

E5

E6
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for k = 1, ...,MAX do

end

The reformulated multiphase hyperbolic BMO algorithm
H

B
M

O

ii. Solve

� > 0

8
>>><

>>>:

utt = �u in (0,�t)⇥ ⌦

@u
@⌫ = 0 on (0,�t)⇥ @⌦

u(t = 0, x) = 2z✏
k�1 � z✏

k�2 in ⌦

ut(t = 0, x) = 0 in ⌦

E

k
i = {x 2 ⌦ : u(�t, x) · pi = max

j=1,...,N
u(�t, x) · pj}, i = 1, ..., N

0 < �t ⌧ 1

iii. Evolve the interface:

�k
i = @Ek

i , i = 1, ..., N

3-phase 4-phase2-phase

coordinates are given

by the vertices of a

regular simplex in RN .

pk 2 RN�1 :

z✏

k

(x) =
NX

i=1

✓
pi

�{dk
i (x)�

✏
2} +

1

✏

⇣
✏

2
+ d

k

i

(x)
⌘
pi

�{�✏
2 <d

k
i (x)<

✏
2}

◆

i. Construct the initial vector field, z✏k�1
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multiphase hyperbolic mean curvature flow

Numerical behavior of our approximation method
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multiphase hyperbolic mean curvature flow

Numerical behavior of our approximation method
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uh
t

⇤
� ut, rūh ⇤

� ru, ruh ⇤
� ru (weakly star in L1(0, T ;L2(�)))

ūh ! u, uh ! u (strongly in L2
(QT )).

uh
t (t)� uh

t (t� h)

h
⇤
� utt, (weakly star in L1(0, T ;L2(�)))

Ω t

u h (t, x) un (x) un+1(x)

Ω t

uh (t, x)

Uniform Energy Estimates on the Minimizing Movement

Vector-type minimizing movement:

Wave Type

Penalties+
N�1X

k=1

1

�̃
|Vk �meas(En

k )|
2

�̃ > 0

u,un�1,un�2 2 H1(⌦;RN�1)

Fn(u) =

Z

⌦

✓
|u� 2un�1 + un�2|2

2h2
+

|ru|2

2

◆
dx

If there is no penalty, the minimizing movement converges:
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v0 = �+ v̄v = �+ k̄
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v0 = �+ v̄v = �+ k̄

Wednesday, December 3, 14



Properties of the approximation scheme

39

Multiphase Volume Preserving HMCF
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Hydrophilic

40

Contact Angles

Hydrophobic

Wednesday, December 3, 14
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Error Analysis

Wednesday, December 3, 14



Summary

42

The method is a threshold-dynamical algorithm, of the BMO type

The level set formulation suggested that thresholding evolution by the wave 
equation should yield the desired dynamics

Using the explicit representation formulas of the wave equation, we showed that the thresholding 
process yields motion by hyperbolic mean curvature flow, with an error of order t.

We introduced a method for approximating motion by hyperbolic mean curvature flow (HMCF)

Numerical investigations suggest that volume preservation should be possible as well
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Thank you for your attention
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