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Motivation

I Motivation

Competition, spreading: Lotka-Volterra type competition-diffusion
(1D habitat):{

ut = d1uxx + r1u(1− u − kv), x ∈ R, t > 0,
vt = d2vxx + r2v(1− v − hu), x ∈ R, t > 0,

(1.1)

where all parameters are positive and

u(x , t), v(x , t): population densities;

d1, d2: diffusion coefficients;

k, h: competition coefficients;

r1, r2: intrinsic growth rates.



The minimal habitat size for spreading in a weak competition system with two free boundaries

Motivation

I Motivation

Traveling waves front solutions:

Tang-Fife (1980), Gardner (1982), Conley-Gardner (1984),
Kan-on (1995,1997)...etc

Front-like entire solutions: Morita-Tachibana (2009)
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I Motivation

Asymptotic spreading speed:
Weinberger-Lewis-Li (2002), Lewis-Li-Weinberger (2005),
Li-Weinberger-Lewis (2005), Liang-Zhao (2007,2010)...etc

For example, if u is stronger than v ,

lim
t→∞

sup{[1− u(x , t)]2 + v2(x , t) : |x | ≤ (c∗ − ε)t} = 0,

lim
t→∞

sup{[1− v(x , t)]2 + u2(x , t) : |x | ≥ (c∗ + ε)t} = 0,

for any ε > 0.
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How to describe the spreading of two species in 1D?



The minimal habitat size for spreading in a weak competition system with two free boundaries

Motivation

Spreading front as a free boundary

Du and Lin (2010):
ut = duxx + u(a− bu), 0 < x < h(t), t > 0,
ux(0, t) = 0, u(h(t), t) = 0, t > 0,
h′(t) = −µux(h(t), t), t > 0,

(A spreading-vanishing dichotomy) Every solution either

Spreading: limt→+∞ h(t) := h∞ =∞ and u → a/b as t →∞
or
Vanishing: h∞ ≤ (π/2)

√
d/a and u → 0 as t →∞

h(t) = (c0 + O(1))t as t →∞, c0 is called the asymptotic
spreading speed
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Hilhorst, Iida, Mimura and Ninomiya (2001 Japan J. Indust.
Appl. Math): Singular limit analysis

Bunting, Du and Krakowski (2012 NHM): ”population loss”
at the spreading front.
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II Spreading front as a free boundary: two species case

Guo and Wu (2014):

Two species have their own spreading front.

Two spreading fronts may intersect each other.
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II Spreading front as a free boundary: two species case

Guo-Wu (2014) study the following problem (P) with
0 < k < 1 < h (u is superior competitor):

ut = d1uxx + r1u(1− u − kv), 0 < x < s(t), t > 0,

vt = d2vxx + r2v(1− v − hu), 0 < x < σ(t), t > 0,

ux(0, t) = vx(0, t) = 0, t > 0,

u ≡ 0 for x ≥ s(t) and t > 0; v ≡ 0 for x ≥ σ(t) and t > 0,

s ′(t) = −µ1ux(s(t), t); σ′(t) = −µ2vx(σ(t), t) for t > 0,

(s, σ)(0) = (s0, σ0), (u, v)(x , 0) = (u0, v0)(x) for x ∈ [0,∞),
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II Spreading front as a free boundary: two species case

In ODE sense: u always wipes out v if 0 < k < 1 < h .

Guo-Wu (2014): The inferior competitor v can survive if
0 < k < 1 < h!
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II Spreading front as a free boundary: two species case

Question: does there exist the minimal habitat size for
spreading of v?

We do not know if 0 < k < 1 < h!

Yes if 0 < h, k < 1 (Wu, 2014).

Given di , ri (i = 1, 2), h and k (the parameters in u and
v -equation), there exists smin in the sense that it is the
minimal value such that s0 ≥ smin guarantees the spreading of
u, regardless of σ0, u0, v0 and µi , i = 1, 2, but it can vanish
eventually if s0 < smin.

smin: the minimal habitat size for spreading of u.
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II Spreading front as a free boundary: two species case

Hereafter, we always assume (H): 0 < h, k < 1.

Let s∞ := limt→∞ s(t) and σ∞ := limt→∞ σ(t)

We introduce the following four quantities:

s∗ :=
π

2

√
d1
r1
, s∗ :=

π

2

√
d1
r1

1√
1− k

,

σ∗ :=
π

2

√
d2
r2
, σ∗ :=

π

2

√
d2
r2

1√
1− h

.

s∗ < s∗ and σ∗ < σ∗.
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II Spreading front as a free boundary: two species case

(Vanishing) The species u vanishes eventually if s∞ < +∞
and

lim
t→+∞

‖u(·, t)‖C([0,s(t)]) = 0;

(Spreading) The species u spreads successfully if s∞ = +∞
and the species u persists in the sense that

lim inf
t→∞

u(x , t) > 0

uniformly in any bounded interval of [0,∞).
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III Main results

Theorem

Assume (H). Then the followings hold:

(i) If s∞ ≤ s∗, then u vanishes eventually.

(ii) If s∞ ∈ (s∗, s
∗], then u vanishes eventually and v spreads

successfully.

(iii) If s∞ > s∗, then u spreads successfully.
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Theorem

Assume (H). Then the followings hold:

(i) If σ∞ ≤ σ∗, then v vanishes eventually.

(ii) If σ∞ ∈ (σ∗, σ
∗], then v vanishes eventually and u spreads

successfully.

(iii) If σ∞ > σ∗, then v spreads successfully.
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Corollary (spreading-vanishing quartering)

Assume (H). Then the dynamics of (P) can be classified into four
cases:

(i) both two species vanish eventually. In this case, s∞ ≤ s∗ and
σ∞ ≤ σ∗,

(ii) u vanishes eventually and v spreads successfully. In this case,
s∞ ≤ s∗,

(iii) u spreads successfully and v vanishes eventually. In this case,
σ∞ ≤ σ∗.

(iv) both two species spreading successfully.
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III Main results

Theorem

Assume (H). Then the followings hold:

(a) If s0 ≥ s∗, then u spreading successfully, regardless of u0, v0,
σ0.

(b) If s0 < s∗ and ‖u0‖L∞ is small enough, then u vanishes
eventually.

(c) If s0 < s∗, ‖u0‖L∞ is small enough and σ0 ≥ σ∗, then u
vanishes eventually and v spreading successfully.
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III Main results

Theorem

Assume (H). Then the followings hold:

(d) If σ0 < σ∗, ‖v0‖L∞ is small enough and s0 ≥ s∗, then v
vanishes eventually and u spreading successfully.

(e) Let s0 ∈ (s∗, s
∗) and σ0 > σ∗ (so v spreading successfully).

Then the species u vanishes eventually with s∞ ∈ (s∗, s
∗) as

long as h and µ1 are small enough.
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Recall that if s∞ > s∗, then u spreads successfully.

Question: for any given di , ri (i = 1, 2), h and k , the
parameters in u-equation and v -equation, does there exist a
smin in the sense that it is the minimal value such that
s0 ≥ smin guarantees the spreading of u, regardless of σ0, u0,
v0 and µi , i = 1, 2, but it can vanish eventually if s0 < smin

If such smin exists, we call it the minimal habitat size for
spreading of u.
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Theorem (The minimal habitat size for spreading of u)

Assume (H) and let di , ri (i = 1, 2), h and k be given. Then there
exists minimal habitat size for spreading

smin := min{ŝ > 0| u always spreads successfully if s0 = ŝ}

such that the species u spreads successfully, regardless of u0, v0,
σ0 and the parameters µi , i = 1, 2 if and only if s0 ≥ smin.
Furthermore,

π

2

√
d1
r1

(
1− hk

1− k

)
≤ smin ≤ s∗ (3.2)
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Ideas of proofs

Define

A := {ŝ > 0| u always spreads successfully if s0 = ŝ,

regardless of u0, v0, σ0 and µi}.

A 6= ∅ since s∗ ∈ A. Hence smin := inf A is well-defined.

Claim: s̃ ∈ A ⇒ s ∈ A for all s > s̃ (comparison).

Claim: smin ∈ A.

Claim:

π

2

√
d1
r1

(
1− hk

1− k

)
≤ smin.

Using a contradiction argument.
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Corollary (The minimal habitat size for spreading of v)

Assume (H) and let di , ri (i = 1, 2), h and k be given. Then there
exists minimal habitat size for spreading

σmin := min{σ̂ > 0| v always spreads successfully if σ0 = σ̂}

such that the species v spreads successfully, regardless of u0, v0, s0
and the parameters µi , i = 1, 2 if and only if σ0 ≥ σmin.
Furthermore,

π

2

√
d2
r2

(
1− hk

1− h

)
≤ σmin ≤ σ∗
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III Main results

Theorem (Long-time behavior)

Assume that (H) and s∞ = σ∞ =∞. Then for each l ≥ 0,

lim
t→∞

max
0≤x≤l

∣∣∣∣u(x , t)− 1− k

1− hk

∣∣∣∣ = 0,

lim
t→∞

max
0≤x≤l

∣∣∣∣v(x , t)− 1− h

1− hk

∣∣∣∣ = 0.

Iteration scheme. Construct some suitable sequences {un},
ūn, vn and v̄n.

For each l ≥ 0,

un ≤ lim inf
t→+∞

u(x , t) ≤ lim sup
t→+∞

u(x , t) ≤ ūn,

vn ≤ lim inf
t→+∞

v(x , t) ≤ lim sup
t→+∞

v(x , t) ≤ v̄n,

uniformly for x ∈ [0, l ].
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IV Discussion

In the weak competition case, the larger initial habitat size the
species owns, the more benefit the species has for spreading.

If v ≡ 0, we have smin = s∗, which is exactly the critical
length in single species established by Du-Lin (2010).

As h→ 0, smin ↑ s∗. It means that the species u becomes
weaker, it becomes more challenge for successful spreading.
Similarly, we have such result for v .
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END

Thank you for your attention!
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