Multiscale Modeling of Pedestrian Dynamics Individuality vs. Collectivity

Andrea Tosin*

Istituto per le Applicazioni del Calcolo "M. Picone" Consiglio Nazionale delle Ricerche Rome, Italy

ICMMA 2014 "Crowd Dynamics" Meiji University, Nakano Campus, Tokyo January 10–12, 2015

^{*} Joint with: L. Bruno, A. Colombi, A. Corbetta, E. Cristiani, B. Piccoli, L. Preziosi, F. Priuli, M. Scianna

• Discrete perception: the moving pedestrian senses the individuals

- Discrete perception: the moving pedestrian senses the individuals
- Continuous perception: the moving pedestrian senses the group

- Discrete perception: the moving pedestrian senses the individuals
- Continuous perception: the moving pedestrian senses the group
- Multiscale: the moving pedestrian tunes his/her perception

• $X_t \in \mathbb{R}^2$ position of the moving pedestrian at time t

• $X_t \in \mathbb{R}^2$ position of the moving pedestrian at time t

$$\dot{X}_t =$$
 (1)

• $X_t \in \mathbb{R}^2$ position of the moving pedestrian at time t

$$\dot{X}_t = v_{
m d}(X_t)$$

(1)

• $X_t \in \mathbb{R}^2$ position of the moving pedestrian at time t

$$\dot{X}_t = v_d(X_t) + \frac{1}{a + \mu(S_R(X_t))} \int_{S_R(X_t)} K(y - X_t) \, d\mu(y) \tag{1}$$

• $X_t \in \mathbb{R}^2$ position of the moving pedestrian at time t

$$\dot{X}_t = v_d(X_t) + \frac{1}{a + \mu(S_R(X_t))} \int_{S_R(X_t)} K(y - X_t) \, d\mu(y) \tag{1}$$

• $v_d : \mathbb{R}^2 \to \mathbb{R}^2$ desired velocity to the target, e.g., $v_d(X_t) = v_0 \frac{x_T - X_t}{|x_T - X_t|}$

• $X_t \in \mathbb{R}^2$ position of the moving pedestrian at time t

$$\dot{X}_t = v_d(X_t) + \frac{1}{a + \mu(S_R(X_t))} \int_{S_R(X_t)} K(y - X_t) \, d\mu(y) \tag{1}$$

• $v_d: \mathbb{R}^2 \to \mathbb{R}^2$ desired velocity to the target, e.g., $v_d(X_t) = v_0 \frac{x_T - X_t}{|x_T - X_t|}$

• $\mu: \mathcal{B}(\mathbb{R}^2) \to \mathbb{R}_+$ distribution of the static crowd

$$\mu = C_{\theta} \left(\theta \sum_{k=1}^{N} \delta_{\xi_{k}} + (1-\theta)\rho \right)$$

- density $\rho: \mathbb{R}^2 \to [0, +\infty)$ s.t. $\int_{\mathbb{R}^2} \rho(x) \, dx = N$ $\theta = \theta(X_t, y) \in [0, 1]$ level of perception \mathcal{C}_{θ} normalization constant s.t. $\mu(\mathbb{R}^2) = N$ (number of static pedestrians)

• $X_t \in \mathbb{R}^2$ position of the moving pedestrian at time t

$$\dot{X}_t = v_d(X_t) + \frac{1}{a + \mu(S_R(X_t))} \int_{S_R(X_t)} K(y - X_t) \, d\mu(y) \tag{1}$$

• $v_d: \mathbb{R}^2 \to \mathbb{R}^2$ desired velocity to the target, e.g., $v_d(X_t) = v_0 \frac{x_T - X_t}{|x_T - X_t|}$

• $\mu: \mathcal{B}(\mathbb{R}^2) \to \mathbb{R}_+$ distribution of the static crowd

$$\mu = C_{\theta} \left(\theta \sum_{k=1}^{N} \delta_{\xi_{k}} + (1-\theta)\rho \right)$$

- density $\rho: \mathbb{R}^2 \to [0, +\infty)$ s.t. $\int_{\mathbb{R}^2} \rho(x) \, dx = N$ $\theta = \theta(X_t, y) \in [0, 1]$ level of perception \mathcal{C}_{θ} normalization constant s.t. $\mu(\mathbb{R}^2) = N$ (number of static pedestrians)
- $S_R(X_t) \subset \mathbb{R}^2$ sensory region of the moving pedestrian \checkmark Figure

• $X_t \in \mathbb{R}^2$ position of the moving pedestrian at time t

$$\dot{X}_t = v_d(X_t) + \frac{1}{a + \mu(S_R(X_t))} \int_{S_R(X_t)} K(y - X_t) \, d\mu(y) \tag{1}$$

• $v_d: \mathbb{R}^2 \to \mathbb{R}^2$ desired velocity to the target, e.g., $v_d(X_t) = v_0 \frac{x_T - X_t}{|x_T - X_t|}$

• $\mu: \mathcal{B}(\mathbb{R}^2) \to \mathbb{R}_+$ distribution of the static crowd

$$\mu = \mathcal{C}_{\theta} \left(\theta \sum_{k=1}^{N} \delta_{\xi_k} + (1-\theta)\rho \right)$$

- density $\rho: \mathbb{R}^2 \to [0, +\infty)$ s.t. $\int_{\mathbb{R}^2} \rho(x) \, dx = N$ $\theta = \theta(X_t, y) \in [0, 1]$ level of perception \mathcal{C}_{θ} normalization constant s.t. $\mu(\mathbb{R}^2) = N$ (number of static pedestrians)
- $S_R(X_t) \subset \mathbb{R}^2$ sensory region of the moving pedestrian \checkmark Figure
- $K: \mathbb{R}^2 \to \mathbb{R}^2$ interaction kernel (collision avoidance) \checkmark Figure

The Path-Perception Relationship

Assumptions:

- $\theta = \theta(X_t)$, i.e., the level of perception depends on the position of the moving pedestrian ("Lagrangian" perception);
- $\theta: \mathbb{R}^2 \to [0, 1]$ Lipschitz continuous;
- smooth desired velocity, i.e., v_d is Lipschitz continuous in \mathbb{R}^2 ;
- smooth interactions, i.e., $K(\cdot X_t)$ is Lipschitz continuous in $S_R(X_t)$.

Denote
$$\epsilon := \sum\limits_{k=1}^N \delta_{\xi_k}$$
 for brevity. Then:

The Path-Perception Relationship

Assumptions:

- $\theta = \theta(X_t)$, i.e., the level of perception depends on the position of the moving pedestrian ("Lagrangian" perception);
- $\theta: \mathbb{R}^2 \to [0, 1]$ Lipschitz continuous;
- smooth desired velocity, i.e., v_d is Lipschitz continuous in \mathbb{R}^2 ;
- smooth interactions, i.e., $K(\cdot X_t)$ is Lipschitz continuous in $S_R(X_t)$.

Denote
$$\epsilon := \sum\limits_{k=1}^N \delta_{\xi_k}$$
 for brevity. Then:

Theorem (Stability of the trajectories)

Let θ^1 , θ^2 be two perception functions which generate the trajectories $t \mapsto X_t^1$, $t \mapsto X_t^2$, respectively. Fix any final time $0 < T < +\infty$. There exists a constant $C_T > 0$ such that

$$\left|X_{t}^{2}-X_{t}^{1}\right| \leq \mathcal{C}_{T}t \cdot e^{\mathcal{C}_{T}\ell(\theta^{1},\theta^{2})W_{1}(\rho,\epsilon)t}W_{1}(\rho,\epsilon)\left\|\theta^{2}-\theta^{1}\right\|_{\infty} \quad \forall t \in [0,T],$$

where $\ell(\theta^1, \theta^2) := \min\{\operatorname{Lip}(\theta^1), \operatorname{Lip}(\theta^2)\}.$

• Discrete perception: formation of parallel lanes

- Discrete perception: formation of parallel lanes
- Continuous perception: clogging of the bottleneck

- Discrete perception: formation of parallel lanes
- Continuous perception: clogging of the bottleneck
- Multiscale perception: alternate passage (traffic light effect)

• $X_t(x) \in \mathbb{R}^2$ position at time t of the individual who was initially in $x \in \mathbb{R}^2$

$$\dot{X}_t = v[\mu_t](X_t) := v_d(X_t) + \frac{1}{a + \mu_t(S_R(X_t))} \int_{S_R(X_t)} K(y - X_t) \, d\mu_t(y)$$

• $X_t(x) \in \mathbb{R}^2$ position at time t of the individual who was initially in $x \in \mathbb{R}^2$

$$\dot{X}_t = v[\mu_t](X_t) := v_d(X_t) + \frac{1}{a + \mu_t(S_R(X_t))} \int_{S_R(X_t)} K(y - X_t) \, d\mu_t(y)$$

• μ_t as a material quantity: μ_0 is transported to μ_t by $(t, x) \mapsto X_t(x)$

$$\mu_t = X_t \# \mu_0 \iff \mu_t(E) = \mu_0(X_t^{-1}(E)) \iff \int_{\mathbb{R}^2} \varphi \, d\mu_t = \int_{\mathbb{R}^2} (\varphi \circ X_t) \, d\mu_0$$

• $X_t(x) \in \mathbb{R}^2$ position at time t of the individual who was initially in $x \in \mathbb{R}^2$

$$\dot{X}_t = v[\mu_t](X_t) := v_d(X_t) + \frac{1}{a + \mu_t(S_R(X_t))} \int_{S_R(X_t)} K(y - X_t) \, d\mu_t(y)$$

• μ_t as a material quantity: μ_0 is transported to μ_t by $(t, x) \mapsto X_t(x)$

$$\mu_t = X_t \# \mu_0 \iff \mu_t(E) = \mu_0(X_t^{-1}(E)) \iff \int_{\mathbb{R}^2} \varphi \, d\mu_t = \int_{\mathbb{R}^2} (\varphi \circ X_t) \, d\mu_0$$

• Reynolds Theorem

$$\frac{d}{dt}\langle \mu_t, \varphi \rangle = \frac{d}{dt} \int_{\mathbb{R}^2} \varphi \, d\mu_t = \frac{d}{dt} \int_{\mathbb{R}^2} (\varphi \circ X_t) \, d\mu_0 = \int_{\mathbb{R}^2} v[\mu_t](x) \cdot \nabla \varphi(x) \, d\mu_t(x) = \int_{\mathbb{R}^2} v[\mu_t](x) \, d\mu_t(x) =$$

• $X_t(x) \in \mathbb{R}^2$ position at time t of the individual who was initially in $x \in \mathbb{R}^2$

$$\dot{X}_t = v[\mu_t](X_t) := v_d(X_t) + \frac{1}{a + \mu_t(S_R(X_t))} \int_{S_R(X_t)} K(y - X_t) \, d\mu_t(y)$$

• μ_t as a material quantity: μ_0 is transported to μ_t by $(t, x) \mapsto X_t(x)$

$$\mu_t = X_t \# \mu_0 \iff \mu_t(E) = \mu_0(X_t^{-1}(E)) \iff \int_{\mathbb{R}^2} \varphi \, d\mu_t = \int_{\mathbb{R}^2} (\varphi \circ X_t) \, d\mu_0$$

• Reynolds Theorem

$$\frac{d}{dt}\langle \mu_t, \varphi \rangle = \frac{d}{dt} \int_{\mathbb{R}^2} \varphi \, d\mu_t = \frac{d}{dt} \int_{\mathbb{R}^2} (\varphi \circ X_t) \, d\mu_0 = \int_{\mathbb{R}^2} v[\mu_t](x) \cdot \nabla \varphi(x) \, d\mu_t(x) + \int_{\mathbb{R}^2} v[\mu_t](x) \, d\mu_t(x) + \int_{\mathbb{R}^2} v[\mu_$$

• Finally

$$\frac{\partial_t \mu_t + \operatorname{div}(\mu_t v[\mu_t]) = 0}{\text{with } \mu_0 \text{ as initial condition}}$$
(2)

Sketch of the Theory for the Measure-Valued Equation

Assumptions:

- constant $\theta \in [0, 1]$;
- smooth desired velocity, i.e., v_d is Lipschitz continuous in \mathbb{R}^2 ;
- smooth interactions, i.e., $K(\cdot x)$ is Lipschitz continuous in $S_R(x)$;
- $\mu_0 \in \mathcal{M}_1^N(\mathbb{R}^2) \cap \mathcal{M}_2^N(\mathbb{R}^2).$

Sketch of the Theory for the Measure-Valued Equation

Assumptions:

- constant $\theta \in [0, 1]$;
- smooth desired velocity, i.e., v_d is Lipschitz continuous in \mathbb{R}^2 ;
- smooth interactions, i.e., $K(\cdot x)$ is Lipschitz continuous in $S_R(x)$;
- $\mu_0 \in \mathcal{M}_1^N(\mathbb{R}^2) \cap \mathcal{M}_2^N(\mathbb{R}^2).$

Theorem (Well-posedness)

Fix a final time $0 < T < +\infty$. There exists a unique weak solution $\mu \in C([0, T]; \mathcal{M}_1^N(\mathbb{R}^2))$ to the Cauchy problem (2), which also satisfies

 $W_1(\mu_t^1, \mu_t^2) \le \mathcal{C}W_1(\mu_0^1, \mu_0^2) \quad \forall t \in (0, T].$

Sketch of the Theory for the Measure-Valued Equation

Assumptions:

- constant $\theta \in [0, 1]$;
- smooth desired velocity, i.e., v_d is Lipschitz continuous in \mathbb{R}^2 ;
- smooth interactions, i.e., $K(\cdot x)$ is Lipschitz continuous in $S_R(x)$;
- $\mu_0 \in \mathcal{M}_1^N(\mathbb{R}^2) \cap \mathcal{M}_2^N(\mathbb{R}^2).$

Theorem (Well-posedness)

Fix a final time $0 < T < +\infty$. There exists a unique weak solution $\mu \in C([0, T]; \mathcal{M}_1^N(\mathbb{R}^2))$ to the Cauchy problem (2), which also satisfies

$$W_1(\mu_t^1, \mu_t^2) \le \mathcal{C}W_1(\mu_0^1, \mu_0^2) \quad \forall t \in (0, T].$$

Theorem (Multiscale representation)

- If μ_0 is atomic then so is μ_t for all $t \in (0, T]$.
- If μ₀ is absolutely continuous and Lip(v)Te^{Lip(v)T} < 1 then also μ_t is absolutely continuous for all t ∈ (0, T].

Volume 12

Multiscale Modeling of Pedestrian Dynamics

Emiliano Cristiani • Benedetto Piccoli • Andrea Tosin

MS&A

Modeling, Simulation & Applications

References

- L. Bruno, A. Tosin, P. Tricerri, and F. Venuti. Non-local first-order modelling of crowd dynamics: A multidimensional framework with applications. *Appl. Math. Model.*, 35(1):426–445, 2011.
- [2] A. Colombi, M. Scianna, and A. Tosin. Moving in a crowd: human perception as a multiscale process. Preprint: arXiv:1502.01375, 2015.
- [3] E. Cristiani, B. Piccoli, and A. Tosin. Multiscale modeling of granular flows with application to crowd dynamics. *Multiscale Model. Simul.*, 9(1):155–182, 2011.
- [4] E. Cristiani, B. Piccoli, and A. Tosin. Multiscale Modeling of Pedestrian Dynamics, volume 12 of MS&A: Modeling, Simulation and Applications. Springer International Publishing, 2014.
- [5] E. Cristiani, F. S. Priuli, and A. Tosin. Modeling rationality to control self-organization of crowds: an environmental approach. *SIAM J. Appl. Math.*, 2015. Accepted.
- [6] B. Piccoli and A. Tosin. Pedestrian flows in bounded domains with obstacles. Contin. Mech. Thermodyn., 21(2):85–107, 2009.
- [7] B. Piccoli and A. Tosin. Time-evolving measures and macroscopic modeling of pedestrian flow. Arch. Ration. Mech. Anal., 199(3):707–738, 2011.
- [8] A. Tosin.
 - Multiscale crowd dynamics: Modeling and theory.

In A. Muntean and F. Toschi, editors, Collective Dynamics from Bacteria to Crowds, volume 553 of CISM International Centre for Mechanical Sciences, pages 157–177. Springer, Vienna, 2014.

[9] A. Tosin and P. Frasca.

Existence and approximation of probability measure solutions to models of collective behaviors. *Netw. Heterog. Media*, 6(3):561–596, 2011.

Figure: Sensory region of the moving pedestrian

Figure: Modulus of the interaction kernel