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Moving in a Crowd: Human Perception as a Multiscale Process

• Discrete perception: the moving pedestrian senses the individuals

• Continuous perception: the moving pedestrian senses the group

• Multiscale: the moving pedestrian tunes his/her perception
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Modeling Perception with Measures

• Xt ∈ R2 position of the moving pedestrian at time t

Ẋt = vd(Xt) +
1

a+ µ(SR(Xt))

∫
SR(Xt)

K(y −Xt) dµ(y)

(1)

• vd : R2 → R2 desired velocity to the target, e.g., vd(Xt) = v0
xT−Xt
|xT−Xt|

• µ : B(R2)→ R+ distribution of the static crowd

µ = Cθ

(
θ

N∑
k=1

δξk + (1− θ)ρ

)

• density ρ : R2 → [0, +∞) s.t.
∫
R2 ρ(x) dx = N

• θ = θ(Xt, y) ∈ [0, 1] level of perception
• Cθ normalization constant s.t. µ(R2) = N (number of static pedestrians)

• SR(Xt) ⊂ R2 sensory region of the moving pedestrian Figure

• K : R2 → R2 interaction kernel (collision avoidance) Figure
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Ẋt =

vd(Xt) +
1

a+ µ(SR(Xt))

∫
SR(Xt)

K(y −Xt) dµ(y)

(1)

• vd : R2 → R2 desired velocity to the target, e.g., vd(Xt) = v0
xT−Xt
|xT−Xt|

• µ : B(R2)→ R+ distribution of the static crowd

µ = Cθ

(
θ

N∑
k=1

δξk + (1− θ)ρ

)

• density ρ : R2 → [0, +∞) s.t.
∫
R2 ρ(x) dx = N

• θ = θ(Xt, y) ∈ [0, 1] level of perception
• Cθ normalization constant s.t. µ(R2) = N (number of static pedestrians)

• SR(Xt) ⊂ R2 sensory region of the moving pedestrian Figure

• K : R2 → R2 interaction kernel (collision avoidance) Figure



Modeling Perception with Measures

• Xt ∈ R2 position of the moving pedestrian at time t
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The Path-Perception Relationship

Assumptions:

• θ = θ(Xt), i.e., the level of perception depends on the position of the
moving pedestrian (“Lagrangian” perception);

• θ : R2 → [0, 1] Lipschitz continuous;
• smooth desired velocity, i.e., vd is Lipschitz continuous in R2;
• smooth interactions, i.e., K(· −Xt) is Lipschitz continuous in SR(Xt).

Denote ε :=
N∑
k=1

δξk for brevity. Then:

Theorem (Stability of the trajectories)

Let θ1, θ2 be two perception functions which generate the trajectories t 7→ X1
t ,

t 7→ X2
t , respectively. Fix any final time 0 < T < +∞. There exists a constant

CT > 0 such that∣∣X2
t −X1

t

∣∣ ≤ CT t · eCT `(θ1, θ2)W1(ρ, ε)tW1(ρ, ε)
∥∥θ2 − θ1∥∥∞ ∀ t ∈ [0, T ],

where `(θ1, θ2) := min{Lip(θ1), Lip(θ2)}.
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Multiscale Modeling of the Whole Crowd Dynamics

• Discrete perception: formation of parallel lanes

• Continuous perception: clogging of the bottleneck

• Multiscale perception: alternate passage (traffic light effect)
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Modeling by Transport of Measures

• Xt(x) ∈ R2 position at time t of the individual who was initially in x ∈ R2

Ẋt = v[µt](Xt) := vd(Xt) +
1

a+ µt(SR(Xt))

∫
SR(Xt)

K(y −Xt) dµt(y)

• µt as a material quantity: µ0 is transported to µt by (t, x) 7→ Xt(x)

µt = Xt#µ0 ⇔ µt(E) = µ0(X
−1
t (E)) ⇔

∫
R2

ϕdµt =

∫
R2

(ϕ ◦Xt) dµ0

• Reynolds Theorem

d

dt
〈µt, ϕ〉 =

d

dt

∫
R2

ϕdµt =
d

dt

∫
R2

(ϕ◦Xt) dµ0 =

∫
R2

v[µt](x)·∇ϕ(x) dµt(x)

• Finally

∂tµt + div(µtv[µt]) = 0 with µ0 as initial condition (2)
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Sketch of the Theory for the Measure-Valued Equation

Assumptions:

• constant θ ∈ [0, 1];
• smooth desired velocity, i.e., vd is Lipschitz continuous in R2;
• smooth interactions, i.e., K(· − x) is Lipschitz continuous in SR(x);
• µ0 ∈MN

1 (R2) ∩MN
2 (R2).

Theorem (Well-posedness)

Fix a final time 0 < T < +∞. There exists a unique weak solution
µ ∈ C([0, T ];MN

1 (R2)) to the Cauchy problem (2), which also satisfies

W1(µ
1
t , µ

2
t ) ≤ CW1(µ

1
0, µ

2
0) ∀ t ∈ (0, T ].

Theorem (Multiscale representation)

• If µ0 is atomic then so is µt for all t ∈ (0, T ].

• If µ0 is absolutely continuous and Lip(v)TeLip(v)T < 1 then also µt is
absolutely continuous for all t ∈ (0, T ].
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