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Moving in a Crowd: Human Perception as a Multiscale Process
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e Discrete perception: the moving pedestrian senses the individuals
e Continuous perception: the moving pedestrian senses the group

e Multiscale: the moving pedestrian tunes his/her perception
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e X, € R? position of the moving pedestrian at time ¢

1

Xy = va(Xe) + ——e—
¢ = va(Xt) a+ pu(Sr(Xt)) Jspx,)

K(y — X1) dp(y) (1)

zp—Xy

e vgq : R? — R? desired velocity to the target, e.g., va(X;) = Vo o]

e 1i: B(R?) — R, distribution of the static crowd
<9 > be +(1-0) )

e density p: R? — [0, 400) s.t. [z p(z)dz = N
o 0 =0(X¢, y) €10, 1] level of perception
e Cp normalization constant s.t. u(R?) = N (number of static pedestrians)
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e X, € R? position of the moving pedestrian at time ¢

. 1
Xt = va(Xe) + o+ 2SrX)) /SR(Xt) K(y — Xt)du(y) (1)

zp—Xy

e vgq : R? — R? desired velocity to the target, e.g., va(X;) = Vo o]

e 1i: B(R?) — R, distribution of the static crowd
<9 > be +(1-0) )

e density p: R? — [0, 400) s.t. [z p(z)dz = N
e 0 =0(Xy, y) €0, 1] level of perception
e Cp normalization constant s.t. u(R?) = N (number of static pedestrians)

e Sr(X:) C R? sensory region of the moving pedestrian

e K : R? — R? interaction kernel (collision avoidance)



The Path-Perception Relationship

Assumptions:

e 0 =0(Xy), i.e., the level of perception depends on the position of the
moving pedestrian (“Lagrangian” perception);

e 0:R? — [0, 1] Lipschitz continuous;

e smooth desired velocity, i.e., vq is Lipschitz continuous in R2:

e smooth interactions, i.e., K(- — X;) is Lipschitz continuous in Sr(X}).

N
Denote € := > d¢, for brevity. Then:
k=1
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Theorem (Stability of the trajectories)

Let 0, 6 be two perception functions which generate the trajectories t — X},
t — X7, respectively. Fix any final time 0 < T < +occ. There exists a constant
Cr > 0 such that

| X2 — X}| < Crt - LTHCH IOty (5 ) |62 — 01| | Vi€ [0, T,

where £(0", 0%) := min{Lip(0'), Lip(6?)}.
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e Discrete perception: formation of parallel lanes
e Continuous perception: clogging of the bottleneck

e Multiscale perception: alternate passage (traffic light effect)
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Modeling by Transport of Measures

X¢(z) € R? position at time ¢ of the individual who was initially in « € R?

X, = v[pe](Xe) = va(Xe) + m /SR(X,) K(y — Xt) dpe(y)

u: as a material quantity: po is transported to u: by (¢, ) — X¢(x)

pe = Xa#tpo & m(E) = (X, '(E) & / wduz=/ (¢ 0 X1) dpo

Reynolds Theorem

Gued) =5 [Ledn=5 [ oXduo= [ @) Vo) duela)

Finally

’8,5#,5 + div(pev[pe]) = O‘ with po as initial condition (2)
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Assumptions:

constant 0 € [0, 1];

smooth desired velocity, i.e., vq is Lipschitz continuous in R?;
smooth interactions, i.e., K (- — z) is Lipschitz continuous in Sg(x);
po € MY (R*) N My’ (R?).
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Sketch of the Theory for the Measure-Valued Equation

Assumptions:

constant 0 € [0, 1];

smooth desired velocity, i.e., vq is Lipschitz continuous in R?;
smooth interactions, i.e., K (- — z) is Lipschitz continuous in Sg(x);
po € MY (R*) N My’ (R?).

Theorem (Well-posedness)

Fix a final time 0 < T < +o0. There exists a unique weak solution
p € C([0, T); MY (R?)) to the Cauchy problem (2), which also satisfies

Wi (e, p) < CWi(pg, pg) Vit € (0, T].

Theorem (Multiscale representation)

e If uo is atomic then so is p; for all t € (0, T.

e If o is absolutely continuous and Lip(v)Te“P"7T < 1 then also p; is
absolutely continuous for all t € (0, T.
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Figure: Sensory region of the moving pedestrian
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Figure: Modulus of the interaction kernel




