

From individual to collective information processing in fish schools

<image>

<section-header><section-header><section-header><section-header><image><image>

Collective motion in fish schools

Schooling manoeuvres in response to predator attacks

Collective motion in fish schools

Collective patterns arising from interactions between fish

What are the interactions rules and behavioral mechanisms involved in the coordination of collective motion?

<text><text>

<text>

Determining interactions rules

What are the neighboring partners involved in the interaction?

A methodology to build reliable models

Collective level: combining many interactions

- To how many neighbors do individuals respond, and what is the relative weight given to each?
- Quantitative predictions: is the model able to accurately predict the collective dynamics and the outcome of novel situations?
- The incremental analysis allows a better understanding of the role played by each behavioral component in the observed collective pattern

Weitz, S. *et al.*, *Plos One* (2012) Gautrais, J. *et al.*, *Plos Computational Biology* (2012)

Dynamics of interaction network

mergent coordination in fish schools

Conclusions

- The modulation of strength of the alignment and attraction behaviors plays a key role in the kind of collective motion pattern that emerge at the school level
- By providing a high responsiveness to perturbations the transition region between milling and schooling is a highly desired state that optimizes the ability of the fish to react collectively (e.g. to a predator attack) thus increasing the survival of fish

Caranx sexfasciatum

