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Scomber scombrus

 To coordinate their actions fish
have to exchange some
information and perform some
specific actions (controlling
linear and turning velocities) in
response to this information
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Collective motion in biological systems

Paenibacillus vortex

Sphyraena barracuda

Paenibacillus vortex

Sphyraena barracuda

© Eshel Ben Jacob© Eshel Ben Jacob

Sturnus vulgaris ( © C. Carrere )

Collective motion in bird flocks

Ballerini, M. et al., PNAS (2008); Cavagna, A. et al., PNAS (2010); Bialek, W. et al., PNAS (2012)
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Océans, (2010)
Directed by
Jacques Perrin,
Pathé Distribution

Collective motion in fish schools

Sphyraena barracuda

Collective motion in fish schools
Schooling manoeuvres in response to predator attacks
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Collective motion in fish schools
Collective patterns arising from interactions between fish

What are the interactions rules and behavioral mechanisms
involved in the coordination of collective motion?

Determining interactions rules
What kind of information is collected?
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Determining interactions rules
What kind of information is collected?
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What kind of information is collected?

Determining interactions rules
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What are the neighboring partners involved in the interaction?

Determining interactions rules

Determining interactions rules
What are the neighboring partners involved in the interaction?
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Determining interactions rules
What are the neighboring partners involved in the interaction?

Determining interactions rules
What are the neighboring partners involved in the interaction?
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How is the information combined?

Determining interactions rules

Cavagna, A. et al., Proc. R. Soc. B (2013)

 Quantification of behaviours at
different scales and in groups
of different sizes

 Connecting micro-level to
macro-level: how do complex
patterns emerge out of local
interactions among individuals?

 Trajectory analysis is used to
build a model of spontaneous
movement

A methodology to build reliable models
Individual level

Trajectory analysis

Weitz, S. et al., Plos One (2012)
Gautrais, J. et al., Plos Computational
Biology (2012)
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 Interactions between pairs of
individuals are characterized

 Computational models are
developed to test assumptions
about the combination of
information sources at the
individual level and the
resulting behavioural decision

 The already-determined
parameters are kept
unchanged and the stimulus-
response function and the
corresponding parameters are
determined from data

stimulus
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Behavioral
response

Computational
model

Response functions

Pair interactions

A methodology to build reliable models

Weitz, S. et al., Plos One (2012)
Gautrais, J. et al., Plos Computational
Biology (2012)

Collective level: combining many
interactions

Dynamics of interaction network

 To how many neighbors do
individuals respond, and what is
the relative weight given to each?

 Quantitative predictions: is the
model able to accurately predict
the collective dynamics and the
outcome of novel situations?

 The incremental analysis allows a
better understanding of the role
played by each behavioral
component in the observed
collective pattern

A methodology to build reliable models

Weitz, S. et al., Plos One (2012)
Gautrais, J. et al., Plos Computational
Biology (2012)
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La Réunion

Saint-Leu

Coral Farm

Study site

Empirical investigation of fish schooling

10 cm

Khulia mugil

Study species: the barred flagtail

Empirical investigation of fish schooling
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5 Fish

30 Fish

4 m

 Single fish and groups of
increasing size (N = 2, 5,
10, 15, 30) have been
recorded in a 4-m wide and
1-m depth tank

 Two minutes were
extracted from digital video
recordings and the position
of the individual's head was
tracked every 1/12 s (1440
data-points per trajectory)

Experimental setup and video tracking

Empirical investigation of fish schooling

5 Fish

30 Fish
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Empirical investigation of fish schooling
Experimental setup and video tracking
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 The swimming speed of
each fish is constant

Gautrais, J. et al., J. Math. Biol., (2009)

Time (s)
S 

(t)

Modeling single fish behavior and wall avoidance

Swimming speed
(m/s)

Curvilinear distance

Spontaneous fish movement

Turning speed
(rad/s)

 The swimming speed of
each fish is constant

 The observed motion
results from a control of the
turning speed

 There is a significant
autocorrelation of the
turning speed

 There is a spontaneous
tendency of the fish to
randomly change the
turning speed

Gautrais, J. et al., J. Math. Biol., (2009)

Swimming speed
(m/s)

Spontaneous fish movement

Modeling single fish behavior and wall avoidance
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A persistent turning walker model of fish movement

Gautrais, J. et al., J. Math. Biol., (2009)

Wall

Spontaneous swimming

: characteristic time of the (exponentially decaying)
autocorrelation function of

Modeling single fish behavior and wall avoidance

A persistent turning walker model of fish movement

Gautrais, J. et al., J. Math. Biol., (2009)

Wall avoidance

1 m

Walldistance before collision

Spontaneous swimming

Modeling single fish behavior and wall avoidance
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ModelData

Wall avoidance

Mean square
displacement  ( m 2 s -1 )

Time (s)

Data

Model

A persistent turning walker model of fish movement

Gautrais, J. et al., J. Math. Biol., (2009)

Modeling single fish behavior and wall avoidance

Deciphering interactions between pairs of fish
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Experiments

E1 E2 E3 E4 E5 E6

Tracking the movement
patterns in groups of 2 fish

Fish n°1

Fish n°2

Empirical investigation of fish schooling

Gautrais, J. et al., Plos Computational Biology (2012)
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Influence of swimming speed on coordination and alignment

 Synchronization increases
with swimming speed

 Directional information is a
required component to
achieve synchronization

 Positional information is
likely to play a key role in
the cohesion of the school

Empirical investigation of fish schooling

Gautrais, J. et al., Plos Computational Biology (2012)

Influence of swimming speed on coordination and alignment

 The degree of
synchronization increases
as a result of an increase
of swimming speed

 Directional information is a
required component to
achieve synchronization

 Positional information is
likely to play a key role in
the cohesion of the school

Empirical investigation of fish schooling

Kowalko, J.E. et al., Current Biology (2013)
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Astyanax mexicanus
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 Positional effect (attraction): turn towards the neighbor

Characterizing interactions between pairs of fish in the model

Fish i

Fish j

Short inter-distance

Gautrais, J. et al., Plos Computational Biology (2012)

Modeling pair interactions

 Positional effect (attraction): turn towards the neighbor

Large inter-distance

Characterizing interactions between pairs of fish in the model

Gautrais, J. et al., Plos Computational Biology (2012)

Modeling pair interactions
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 Directional information (alignment): turn to align with the neighbor

Low swimming speed

Characterizing interactions between pairs of fish in the model

Gautrais, J. et al., Plos Computational Biology (2012)

Modeling pair interactions

 Directional information (alignment): turn to align with the neighbor

High swimming speed

Characterizing interactions between pairs of fish in the model

Gautrais, J. et al., Plos Computational Biology (2012)

Modeling pair interactions
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Directional
effect

Wall
effect

Positional
effect

Modeling pair interactions

Parameter estimation

Gautrais, J. et al., Plos Computational Biology (2012)

Data-driven fish school model

Directional
effect

Wall
effect

Positional
effect

ModelData
2 Fish

Speed Speed

Polarization
Data

Model

Mean inter-
individual distance

0.024 m 28.9 m-1 s-1/2

0.94 0.41 m-1 s-1 2.7 m-1

Gautrais, J. et al., Plos Computational Biology (2012)

Data-driven fish school model
Modeling pair interactions
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Metric interactions

Determining the number and position of influential neighbors

 To how many neighbors do
individuals respond, and
what is the relative weight
given to each?

 In starling flocks each bird
interacts with a fixed
number of neighbors (6-7)
irrespective of their
distance

Data-driven fish school model

Ballerini, M. et al., PNAS (2008)
Raynaud, F. 3D Collective Behavior Models.

Ph.D. thesis, Université Paris 7 (2009)

Topological interactions
 To how many neighbors do

individuals respond, and
what is the relative weight
given to each?

 In starling flocks each bird
interacts with a fixed
number of neighbors (6-7)
irrespective of their
distance

Determining the number and position of influential neighbors

Data-driven fish school model

Ballerini, M. et al., PNAS (2008)
Raynaud, F. 3D Collective Behavior Models.

Ph.D. thesis, Université Paris 7 (2009)
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 K Nearest Neighbors?

KNN = 7

Determining the number and position of influential neighbors

Data-driven fish school model

 Approximating "visible" neighbors with a greedy triangulation

Determining the number and position of influential neighbors

Gautrais, J. et al., Plos Computational Biology (2012)

Data-driven fish school model
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Weighting all influential neighbors
ModelData

5 Fish Simplest assumption:
averaging the influence of
all "visible" neighbors

Data
Model

Speed Speed

Mean inter-
individual distance Polarization

0.024 m 28.9 m-1 s-1/2

0.94 0.41 m-1 s-1 2.7 m-1

Gautrais, J. et al., Plos Computational Biology (2012)

Data-driven fish school model

2 Fish

5 Fish

10 Fish

15 Fish

30 Fish

Mean inter-
individual distancePolarization

Data
Model
No interaction

Comparison between model predictions and experimental data

Data-driven fish school model
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Gregarious locusts

Solitarious locust

Serotonin
level

Anstey et coll.,Science (2009)

Quantification of group-size effect

Group size

Data-driven fish school model

2 Fish

5 Fish

10 Fish

15 Fish

30 Fish

Mean inter-
individual distancePolarization

Data
Model
No interaction

Data-driven fish school model
Comparison between model predictions and experimental data
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Comparison between model predictions and experimental data

30 Fish

ModelData

Mean inter-
individual distancePolarization

Data
Model
No interaction

Gautrais, J. et al., PLoS Computational Biology (2012)

Data-driven fish school model

Speed

 What are the the model
predictions for larger groups in
unbounded space?

Speed = 0.2 m/s

Speed = 0.9 m/s

Speed-induced transition to schooling
100 Fish

Swarming

Schooling

Model properties

Polarization

Calovi, D. et al., New Journal of Physics (2014)
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Speed

 What are the the model
predictions for large groups in
unbounded space?

Time

S
pe

ed

Group polarization
increases with velocity

Polarization

Speed-induced transition to schooling

Model properties

Neighbor ahead

Neighbors’ influence depends on their position

Empirical investigation of fish schooling

Attraction Alignment

Neighbor behind
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Neighbors’ influence depends on their position

Empirical investigation of fish schooling

Attraction Alignment

 In a confined environment
the influence of the spatial
modulation of interactions
on collective motion
patterns cannot be
detected (reaction to the
wall and to the density of
fish)

Neighbor
ahead

Neighbor
behind

Angular weighting of fish interactions

Model properties

Calovi, D. et al., New Journal of Physics (2014)
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Parameter space effect on polarization (schooling)

Exploring the parameter space

Polarization

 Transition to schooling is
independent of the attraction

 Transition to schooling
depends on the attraction

 Polarisation (Schooling) : Order
parameter that tends to unity as fish
are aligned, and zero when swarming

Attraction ( γ ) = 0.8 m/s
(N = 100 fish)

Attraction ( γ )
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Parameter space effect on angular momentum (Milling)

Milling

 No milling region detected  A large milling region is
observed

 Angular momentum (Milling) : Order
parameter that tends to unity as fish
are swimming in a perfect circle

Exploring the parameter space
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 )

Attraction ( γ ) Attraction ( γ ) = 0.8 m/s
(N = 100 fish)
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Region I: Schooling

Polarization

Milling

Nearest
neighbor distance
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Polarization
Milling

Exploring the parameter space

Calovi, D. et al., New Journal of Physics (2014)Attraction ( γ )

A
lig

nm
en

t (
 β

 )

Polarization

Milling

Nearest
neighbor distance

Calovi, D. et al., New Journal of Physics (2014)Attraction ( γ )
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Region II: Milling
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Polarization
Milling

Exploring the parameter space
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Region III: Winding zone (line configuration)
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III

Exploring the parameter space

Polarization

Milling

Nearest
neighbor distance

Calovi, D. et al., New Journal of Physics (2014)Attraction ( γ )
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Region III: Winding zone (line configuration)

School of Atlantic herring
(Clupea harengus)
© P. Brehmer, IRD

Exploring the parameter space

III

Polarization

Milling

Nearest
neighbor distance

Calovi, D. et al., New Journal of Physics (2014)Attraction ( γ )
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Region I-II: Transition zone
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Exploring the parameter space

Polarization

Milling

Nearest
neighbor distance

Tunstrøm, K. et al., PLoS Computational Biology (2013)Attraction ( γ )
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I-II

Enhanced collective response to perturbations
in the transition zone

Model properties

Attraction ( γ )
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Calovi, D. et al., Journal of the Royal Society Interface (2015)
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Enhanced collective response to perturbations
in the transition zone close to criticality

Model properties

Attraction ( γ )
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Difference in average
polarization

III

II

I
N = 100 fish
4.102 simulation runs
Average over 1039 s

I-II

 The maximum
response of the
school to
perturbations is
reached In the
transition zone
between
schooling and
milling

Calovi, D. et al., Journal of the Royal Society Interface (2015)

Wrap-up: main findings

 An incremental methodology
was used to build a fish
behavior model completely
based on interactions with the
physical environment and
neighboring fish

 There is a continuous balancing
between attraction and
alignment behavior as a
function of the distance
between fish

Emergent coordination in fish schools

Khulia mugil
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© Octavio Aburto© Octavio Aburto

Conclusions

Emergent coordination in fish schools

Caranx sexfasciatum

© Octavio Aburto© Octavio Aburto

 The modulation of strength of the
alignment and attraction behaviors
plays a key role in the kind of
collective motion pattern that
emerge at the school level

 By providing a high responsiveness
to perturbations the transition region
between milling and schooling is a
highly desired state that optimizes
the ability of the fish to react
collectively (e.g. to a predator
attack) thus increasing the survival
of fish
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